1 / 29

Networks in Nature

Networks in Nature. e-Tutor ricerca e azione I piccoli mondi dell’e-learnig Milano, 7 novembre 2003. Fabrizio Coccetti e Guido Caldarelli Cecile Caretta, Diego Garlaschelli, Luciano Pietronero, Vito Servedio, Federico Squartini

toan
Download Presentation

Networks in Nature

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Networks in Nature e-Tutor ricerca e azione I piccoli mondi dell’e-learnig Milano, 7 novembre 2003 Fabrizio Coccetti e Guido Caldarelli Cecile Caretta, Diego Garlaschelli, Luciano Pietronero, Vito Servedio, Federico Squartini Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi” Università di Roma “La Sapienza” Fabrizio Coccetti - Guido Caldarelli - et al.

  2. Il messaggio da ricordare Nella maggior parte delle reti reali: • Effetto Small World(il mondo è piccolo) • Struttura Scale-free Fabrizio Coccetti - Guido Caldarelli - et al.

  3. Agenda • Esperimento di Stanley Milgram (1967) • Small World • Il problema dei ponti di Königsberg • Teoria dei Grafi • Strutture scale-free: Internet • Esempi Vari Fabrizio Coccetti - Guido Caldarelli - et al.

  4. L’esperimento di Milgram (1967) E’ possibile consegnare un messaggio ad un agente di cambio a Chicago partendo da persone prese a caso nel Nebraska ? Fabrizio Coccetti - Guido Caldarelli - et al.

  5. Il mondo è piccolo ! In media meno di 6 passaggi !! Sei gradi di separazione Fabrizio Coccetti - Guido Caldarelli - et al.

  6. La struttura delle reti sociali According to Mark Granovetter the shortcuts are the “weak links” Fabrizio Coccetti - Guido Caldarelli - et al.

  7. Il mondo è piccolo La distanza massima tra due punti del sistema è un numero “piccolo”. • Sistemi sociali (relazioni di amicizia, …) • Sistemi di trasporto • Sistemi Informatici (Internet, …) • Sistemi Biologici (proteine, …) • Sistemi ecologici (catene alimentari, …) Fabrizio Coccetti - Guido Caldarelli - et al.

  8. I ponti di Königsberg E` possibile visitare tutte le parti della città di Königsberg passando tutti i ponti sul Pregel una sola volta ? NO! Leonard Euler (1736) mostrò che per essere un punto di passaggio un vertice deve avere un numero pari di archi (collegamenti). Solo i punti di partenza o di fine possono avere un numero dispari di collegamenti. Questo non è il caso di Königsberg. Fabrizio Coccetti - Guido Caldarelli - et al.

  9. 1736 (Königsberg) Tutti i vertici hanno grado dispari. No way Il problema dipende dal tempo ? 2003 (Kaliningrad) Solo B e C hanno grado dispari. OK Fabrizio Coccetti - Guido Caldarelli - et al.

  10. Topologia dei Grafi Un Grafo G(v,e) è un oggetto composto da v vertici and e archi Degree k(In-degree kinandout-degree kout) = number of edges (oriented) per vertex Distance d= minimum number of edges amongst two vertices (in the connected region ) Diameter D= Maximum of the distances ( in the connected region !) Clustering= cliques distribution, or clustering coefficient Usually many quantities are needed In order to “classify” a network Fabrizio Coccetti - Guido Caldarelli - et al.

  11. Topologia dei Grafi (segue) Degree frequency density P(k)= how many times you find a vertex whose degree is k P(k) k Degree Correlation Knn (k) = average degree of a neighbour of a vertex with degree k Clustering Coefficient (k) = the average value of c for a vertex whose degree is k Fabrizio Coccetti - Guido Caldarelli - et al.

  12. Topologia dei Grafi (segue) P(A) A Centrality betweenness b(k)= The probability that a vertex whose degree is k has betweenness b betweenness of Vis the number of distances between any pair of vertices passing through V V TREES ONLY!!! P(A) = Probability Density for subbranches of size A 1 1 1 1 Size distribution: Allometric relations: 1 1 3 5 1 1 C(A) 11 5 2 3 1 1 22 8 A 10 33 Fabrizio Coccetti - Guido Caldarelli - et al.

  13. Aggregation in networks • Low level properties : • Degree : the number of nearest neighbours, not their properties. (B.A. Model) • High level properties : • How the individuality of nodes influence the formation of edges between them. (Our model) • Example: Proprietà , , , … Is there a correlation between properties of adjacent nodes? • Maslov, Sneppen, Zaliznyak, cond-mat/0205379. • Catania et al., Am. J. of Public Health, 82: 284-287 (1992) . Fabrizio Coccetti - Guido Caldarelli - et al.

  14. Assortativity In a first approximation: Property of the node = its degree Assortative networks Disassortative networks • Real networks display one of these two tendencies, • “similar” networks display “similar” behaviours. Techological networks Social networks Fabrizio Coccetti - Guido Caldarelli - et al.

  15. Fabrizio Coccetti - Guido Caldarelli - et al.

  16. Internet Autonomous Systems Exchange Point border routers Peering hosts Routers home networks Fabrizio Coccetti - Guido Caldarelli - et al.

  17. Struttura Scale-free • La maggior parte dei nodi ha poche connessioni • Pochi nodi hanno moltissime connessioni • Buona resistenza a guasti random • Scarsa resistenza ad attacchi pianificati E’ una struttura diversa da reti random o reti regolari Fabrizio Coccetti - Guido Caldarelli - et al.

  18. “Food Web” (ecological network) Set of interconnected food chains resulting in a much more complex topology: Fabrizio Coccetti - Guido Caldarelli - et al.

  19. Ecosystems around the world Lazio Utah Iran Amazonia Peruvian and Atacama Desert Argentina we focus our attention on plants in order to obtain a good universality of the results we have chosen a great variety of climatic environments Ecosystem= Set of all living organisms and environmental properties of a restricted geographic area Fabrizio Coccetti - Guido Caldarelli - et al.

  20. phylum subphylum class subclass order family genus species Connected graph without loops or double-linked nodes • From Linnean trees to graph theory Linnean Tree= hierarchical structure organized on different levels, called taxonomic levels, representing: • classification and identification of different plants • history of the evolution of different species A Linnean tree already has the topological structure of a tree graph • each node in the graph represents a different taxa • (specie, genus, family, and so on). All nodes are • organized on levels representing the taxonomic one • all link are up-down directed and each one • represents the belonging of a taxon to the relative • upper level taxon Fabrizio Coccetti - Guido Caldarelli - et al.

  21. ~ 2.5  0.2 • Scale-free properties Degree distribution: P(k) k The best results for the exponent value are given by ecosystems with greater number of species. For smaller networks its value can increase reaching  = 2.8 - 2.9. Fabrizio Coccetti - Guido Caldarelli - et al.

  22. Protein Interaction Network of Yeast Saccaromyces Cerevisiae Lievito di Birra Fabrizio Coccetti - Guido Caldarelli - et al.

  23. Portfolio Composition Investors or Companies not traded at Borsa di Milano (Italy) Fabrizio Coccetti - Guido Caldarelli - et al. Companies traded at Borsa di Milano (Italy)

  24. Portfolio Composition Fabrizio Coccetti - Guido Caldarelli - et al.

  25. Portfolio Composition Fabrizio Coccetti - Guido Caldarelli - et al.

  26. Portfolio Composition Fabrizio Coccetti - Guido Caldarelli - et al.

  27. Board of Directors Fabrizio Coccetti - Guido Caldarelli - et al.

  28. COSINCOevolution and Self-organisation In dynamical Networks RTD Shared Cost Contract IST-2001-33555 http://www.cosin.org • Nodes 6 in 5 countries • Period of Activity: April 2002-April 2005 • Budget: 1.256 M€ • Persons financed: 8-10 researchers • Human resources: 371.5 Persons/months EU countries Non EU countries EU COSIN participant Non EU COSIN participant Fabrizio Coccetti - Guido Caldarelli - et al.

  29. References • http://www.cosin.org/ • http://www.cosin.org/Publications.html • http://pil.phys.uniroma1.it/~gcalda/Publications.html • http://www.nd.edu/~alb/public.html • http://www1.cs.columbia.edu/~sanders/graphtheory/people/Bollobas.B.html Fabrizio Coccetti - Guido Caldarelli - et al.

More Related