450 likes | 663 Views
Capacity allocation. Lecture 4. Capacity allocation. How many low-fare seats (hotel rooms, rental cars) to allow to be booked while facing the possibility of future high-fare demand Airlines, rental car companies, hotels, cruise lines, freight transportation, made-to-order manufacturing.
E N D
Capacityallocation Lecture 4
Capacity allocation • How many low-fare seats (hotel rooms, rental cars) to allow to be booked while facing the possibility of future high-fare demand • Airlines, rental car companies, hotels, cruise lines, freight transportation, made-to-order manufacturing
The two-class problem • The basic model: all the discount bookings occur any full-fare passengers seek to book • Maximizing revenue/taking into account incremental costs and ancilliary contribution/taking into account sunk costs
Determinethediscountbookinglimit • Tradeoff between setting it too high or too low (dilution vs. spoilage) • ***7.1
B=60->61 • PlaneC=100 • *Dd=50 • *Df=45; Df=55 • *86% • **Dd=65 • **Df=30 • **14%..*6.5% • ***Dd=65 • ***Df=45 • ***14%..*93.5% • =6.5%*190+93.5%*(190-200)=3 • =86%*0+14%*3=0.42 • =86%*0+14%*(6.5%*190+93.5%*(190-200)) • =14%*(6.5%*190+93.5%*(190-200))=>6.5%*190+93.5%*(190-200) • =190—93.5%*200=> Pd—93.5%*Pf>0=>Pd/Pf>93.5%;190/200=95% • 50%*10000+50%*20000=
Discountbookinglimitforanairplanewith 150 seatsis 80 seats. • Theairplaneisbeingsubstitutedforonewith 100 seats. • Whatisthediscountbookinglimitnow?
Kui pd/pf = 0.5, siis paneme me täishinnaga müüki alati mü=66 piletit, olenemata sellest kui suur on full demand standardhälve
Kui diskonteeritud piletid on väga kallid, siis mida riskantsem on täishinnaga piletite müük, seda vähem me täishinnale pileteid protectime
Kui diskonteeritud piletid on väga odavad, siis mida riskantsem on täishinnaga piletite müük, seda rohkem me täishinnale pileteid protectime
Relationtothenewsvendorproblem, 1882 • Overage and underagecosts • O=20 • U=5 • Withrespecttothehighpriceclass • O=pd • U=pf-pd
UsingLittlewood’s (1972) rule • Thealgorithmforsetting b: • Set b to 0; set pd=190; set pf=200->pd/pf=95% • Set b=b+1 (e.g. remainder = 99, if PlaneCapacity=100) • Checkwhether1-Ff(C-b) > 95%– probability, thatthereis too muchfulldemand, isover 95% • If no, gobacktoincreasing b • Otherwisestop at previous b
ExpectedMarginalSeatRevenue (EMSR) Heuristics, thecasewiththreepriceclasses, heuristicEMSRa • Littlewoodlookupforthedistributionof P1: • P3/P1 • Littlewoodlookupforthedistributionof P2: • P3/P2 • Bookinglimit b3= PlaneC minus thetwoquantitiescomputedabove • Thecaseswithmoreclassesanalogous – e.g. firstcalculate b4, then b3, then b2
HeuristicEMSRb, thistime, forexample, forfourclasses • Firstof all, wewantthebookinglimit b4 • Fortheclassesaboveit, calculate a following „weightedaverage“ class • AvgNew=Avg3+Avg2+Avg1 • StdevNew=sqrt(Stdev3^2+Stdev2^2+Stdev1^2) • priceNew=price3*Avg3 /AvgNew + price2*Avg2/AvgNew + price1*Avg1/AvgNew • Do a Littlewoodlookup on price4/priceNew on a distributiongivenbyAvgNew and StdevNewtodeterming b4 • Proceedanalogouslyfor b3, then b2
ComparisonofEMSRa, EMSRb and dynamicprogramming, see Belobaba 1992
Demanddependence • Demandineachfareclassisindependentofdemandintheotherfareclasses • E.g. no cannibalization – opening a discountclass, has no effect on full-faredemand • Also, no buy-up/sell-up – closing a discountfareclassdoesnotleadtoincreaseddemandinhigherfareclasses
Two-classcapacityallocationwithdemanddependence • Insteadof=pd/pf, wehavethemodifiedformula=1/(1-alfa)*(pd/pf-alfa) • to look upusingLittlewood’srule, • alfa beingthefractionofcustomers, whowillswitchtofullprice, afterbeingdenied a discountedticket
Modified EMSR Heuristics, Belobaba and Weatherford 1996 • Allowsbuy-uptothenexthighestclassonly • ModifiedEMSRa – usemodifiedformulaforthecalculationofthenextlevelonly, originalformulafor all theclassesabovethat • ModifiedEMSRb – usemodifiedformulawithrespectto „weightedaverage“ classcreatedforEMSRb (createthisclassintheoriginalway) • Though, they are „heuristicsgrafted on toanotherheuristic“
Measuringtheeffectivenessofrevenuemanagement • Totalrevenueopportunity • No revenuemanagement • RevenueOpportunityMetric • Example: • ROM = ($45 000 – $35 000)/($50 000 - $35 000) • =67% • But, ROM forflightswithverylowdemandwillalwaysbecloseto 100% • And, see Fig7.5 above, iffull-faredemandishigh, butuncertain, ROM willbelower, thanwhenfull-faredemandishigh, butmorecertain (lowstdev) • Thus, astheseexamples show, changesin ROM, mightalsobeduetochangesintheunderlyingfactorsofdemand, ratherthanduetochangesintheeffectivenessofrevenuemanagement
Tacticalrevenuemanagement • Calculates and periodicallyupdatesthebookinglimits • Resources • Unitsofcapacity (flightdeparture, hotel room night, rentalcarday) • Products • Customers are seekingtopurchasethose (a seat on Flight 130 from St. Louis to Cleveland on Monday, June 30 – singleresource; A two-nightstay at theSheraton Cleveland, arriving on March 19 and departing on March 21 – tworesources) • Fareclasses • A combinationof a price and a setofrestrictions on whocanpurchase and when (e.g. group and regionalpricing)
Thefactthat RM operatesfareclasses, doesnotchangemuchfromcustomersview – hestill sees onlythelowestavailablefare • Sinceairlinesstillrespondtotheoffers made bythecompetition, RM supplementsratherthanreplacespricing
Capacityallocation • Howmanyseats (hotelrooms, rentalcars) toallowlow-farecustomerstobook – giventhepossiblefuturehigh-faredemand • Two-classproblem • Discountcustomers • Full-farecustomers • BASIC MODEL – all discountbookingshappenbeforefull-farebookings • Wemaximizeexpectedrevenue – incrementalcosts and ancillarycontribution are zero • Inrealitycompaniesshouldmaximizeexpectedtotalcontribution