330 likes | 501 Views
Deterministic Importance Sampling with Error Diffusion. L ászló Szirmay-Kalos, L ászló Szécsi Budapest University of Technology. Eurographics Symposium on Rendering, 2009. Numerical i ntegration. f : integrand. g : target density. 1. 0. samples. Quadrature error. f/g. f. best:. g.
E N D
Deterministic Importance Sampling with Error Diffusion László Szirmay-Kalos, László Szécsi Budapest University of Technology Eurographics Symposium on Rendering, 2009
Numerical integration f: integrand g: target density 1 0 samples
Quadrature error f/g f best: g
Role of undersampling oversampling Random sampling
Role of Wanted
Previous work • Importance sampling: • Transformation of uniform samples • Rejection sampling • Metropolis (Veach97) • Population Monte Carlo (Lai07) • Importance re-sampling (Talbot05), thresholding (Burke05) • Stratification: • Low-discrepancy series (Shirley91,Keller95,Kollig02) • Poisson-disk/blue-noise (Cook86,Dunbar06,Kopf06) • Tiling (Ostromukhov05-07, Lagae06) • Sample relaxation (Agarwal03,Kollig03,Wan05,Spencer09) 2D only?
Proposed method • Simultaneously targets • Importance sampling • Importance function • Point samples • Cheap • Stratification • Minimize discrepancy in the target domain • Simple!
Sample generation: Phase 1 f I I: importance function Normalization constant: b Tentative samples
Sample generation: Phase 2 G f g=I/b
Frequency modulator Comparator (quantizer) Tentative samples Real samples Integrator y(i) g(i) + -
Frequency domain analysis White noise: n(i) Tentative samples Real samples Integrator y(i) g(i) + - Transfer function in the Z-transform domain: Delay Light-blue noise
Delta-Sigma modulator:Noise-Shaping Feedback Coder Tentative samples Real samples quantizer y(i) g(i) g(i) + + + Noise shaping filter H(z) - Transfer function in the Z-transform domain: Controllable blue noise No delay
Application in higher dimensions pixels Importance map
Application in higher dimensions Importance map
Application in higher dimensions Importance map neighborhood sequence
Equivalence • Deterministic importance sampling allowing arbitrary importance functions and minimizing the error of distribution • Delta-Sigma modulation • Error diffusion halftoning (e.g. Floyd-Steinberg)
Environment mapping with light source sampling v=1 v=1 lighting reflection visibility
Light source sampling = Error diffusion halftoning of the Environment Map Error diffusion Similar complexity and running times! Random sampling
Light source sampling results Random Error diffusion Reference
Light source sampling results for diffuse objects Random Error diffusion Reference
Environment mapping with product sampling visibility lighting reflection • Separate importance map for every shaded point • Computational cost ???: • Similar to importance re-sampling • Negligible overhead more complex scenes
Product sampling: Diffuse objects BRDF sampling Error diffusion Importance resampling 11 sec 13 sec 13 sec
Product sampling: Specular objects BRDF sampling Error diffusion Importance resampling 11 sec 13 sec 13 sec
Product sampling with occlusions BRDF sampling Error diffusion Importance resampling
Even higher dimensions • Regular grid: Curse of dimensionality! • Solution: Low-discrepancy series current sample sequence of visiting samples Error distribution
8 5 11 2 7 4 10 1 6 12 3 9 Elemental interval property
8 5 11 2 7 4 10 1 6 12 3 9 The algorithm in d-dimensions + normalization constant b 11, I(u11) 5, I(u5) 2, I(u2) 8, I(u8) 7, I(u7) 1, I(u1) 10, I(u10) 4, I(u4) 3, I(u3) 9, I(u9) 6, I(u6) 12, I(u12) d-dimensional cube d-dimensional array
Virtual point light source method paths power visibility VPLs of a path BRDF Geometry factor 6D primary sample space
VPL with error diffusion Approximate visibility 6D primary sample space
VPL with error diffusion results (4D, 16 real from 420 tentative) Classical VPL Error diffusion Importance resampling
8D integration (equal time test) Error diffusion Classical VPL
Conclusions • Delta-sigma modulation is a powerful sampling algorithm. • In lower dimensions sampling is equivalent to the error diffusion halftoning of the importance image. • In higher dimensions, implicit cell structure of low-discrepancy series can help to fight the curse of dimensionality.
Open question: Optimal error shaping filter Higher weight for faster changing coordinate