1 / 31

Electromagnetic Probes of the Medium (Status of the Field)

Electromagnetic Probes of the Medium (Status of the Field). Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week 8) on “Quantifying the Properties of Hot QCD Matter” INT (Seattle), 12.-16.07.10.

torn
Download Presentation

Electromagnetic Probes of the Medium (Status of the Field)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electromagnetic Probes of the Medium(Status of the Field) Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA INT Program (Week 8) on “Quantifying the Properties of Hot QCD Matter” INT (Seattle), 12.-16.07.10

  2. 1.) Introduction:EM Probes + QCD Phase Diagram • Electromag. Spectral Function • - √s < 2 GeV: non-perturbative • - √s ≥ 2 GeV: pertubative (dual) • Phase structure tied to • in-medium spectral functions • - expect: hadron gas → QGP • - realization of transition? • Thermal dilepton emission rate • (lEM >> Rnucleus) • thermal g (M→0) → temperature, • EM conductivity + susceptibility √s=M Im Πem(M,q;mB,T)

  3. Outline 1.) Introduction 2.) Chiral Symmetry  Spontaneous Chiral Symmetry Breaking  Chiral Partners, Sum Rules 3.) Light Vector Mesons in Medium  Lagrangian + Constraints  Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology  Nuclear Photoproduction  High-Energy Heavy-Ion Collisions 5.) Conclusions

  4. 2.) Chiral Symmetry Breaking + Hadron Spectrum Condensates fill QCD vacuum: Quark Level: Const. Mass Observables: Hadron Spectrum D(1700) N(1520) D(1232) “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] M [GeV] JP=0±1± 1/2± 3/2± - • Mq* ~ ‹0|qq|0› • chiral breaking:|q2| ≤ 1 GeV 2 • energy gap • massless Goldstone mode • “chiral partners” split(½ GeV)

  5. F2-Structure Function (spacelike) JLAB Data p d • x ≈ x • average → Quark-Hadron Duality • lower onset-Q2in nuclei? [Niculescu et al ’00] 2.3 Q2-Dependence of Chiral Breaking Axial-/Vector Mesons pQCD cont. • Weinberg Sum Rule(s) • spectral distributions!

  6. 2.4 Sum Rules and Order Parameters • QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] • Weinberg-SRs: momentsVector-Axialvector [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93]  Promising synergy of lQCD and effective models

  7. Outline 1.) Introduction 2.) Chiral Symmetry  Spontaneous Chiral Symmetry Breaking  Chiral Partners, Sum Rules 3.) Light Vector Mesons in Medium  Lagrangian + Constraints  Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology  Nuclear Photoproduction  High-Energy Heavy-Ion Collisions 5.) Conclusions

  8. 3.2 r-Meson in Vacuum and Hot/Dense Matter r Sp > Sp > Sp p p r • Vacuum: chiral p rLagrangian Srpp =+ • → P-wave pp phase shift, p el.-mag. formfactor • Hadronic Matter: effective Lagrangian for interactions with heat bath •  In-Medium r-Propagator r Dr (M,q;mB,T) = [M2 - mr2 -Srpp - Sr B -Sr M ]-1 Srpp = + • Pion Cloud [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Oset et al, …] R=D, N(1520), a1, K1 ... r • r-Hadron Scattering SrB,M = [Haglin, Friman et al, RR et al, Post et al, …] h=N, p, K … • constrain effective vertices: R→ r h, scattering data (pN→rN, gN/A)

  9. gN gA p-ex 3.3 Constraints from Nuclear Photo-Absorption g-absorption cross section in-mediumr–spectral function [Urban,Buballa, RR+Wambach ’98] Nucleon Nuclei • quantitative determination of interaction vertex parameters • melting of 2.+3. resonances

  10. 3.4 rSpectral Function in Nuclear Matter rN→B* resonances (low-density approx.) In-med. p-cloud + rN→B* resonances In-med p-cloud + rN → N(1520) [Urban et al ’98] [Post et al ’02] [Cabrera et al ’02] rN=0.5r0 rN=r0 rN=r0 p N →r NPWA Constraints:g N ,g A • strong broadening + small upward mass-shift • empirical constraints important quantitatively

  11. rB /r0 0 0.1 0.7 2.6 3.5 r Spectral Function in Heavy-Ion Collisions Hot+Dense Matter Hot Meson Gas [RR+Gale ’99] [RR+Wambach ’99] • r-meson “melts” in hot /dense matter • medium effects dominated by baryons

  12. Outline 1.) Introduction 2.) Resonances + Chiral Symmetry  Spontaneous Chiral Symmetry Breaking  Chiral Partners 3.) Light Vector Mesons in Medium  Lagrangian + Constraints  Spectral Function in Hot/Dense Matter 4.) Dilepton Phenomenology  Nuclear Photoproduction  High-Energy Heavy-Ion Collisions 5.) Conclusions

  13. 4.1 Nuclear Photoproduction: rMeson in Cold Matter g + A → e+e- X • extracted • “in-med” r-width • Gr≈ 220 MeV e+ e- Eg≈1.5-3 GeV g r [CLAS+GiBUU ‘08] • Microscopic Approach: + in-med. r spectral fct. product. amplitude full calculation fix density 0.4r0 Fe-Ti r g N [Riek et al ’08, ‘10] M[GeV] • r-broadening reduced at high 3-momentum; need low momentum cut!

  14. M ≤ 1 GeV: non-perturbative M > 1.5 GeV: perturbative ImPem~ Nc∑(eq)2 ImPem~ [ImDr + ImDw /10 + ImDf /5] 4.2 Thermal Dilepton Emission e+ e- g* Rate: Im Πem(M,q;mB,T) see→had / see→mm~ Im Pem(M) - e+ e- p p q q e+ e- r √s=M “Hadronic Spectrometer” (T ≤ Tc) “QGP Thermometer” (T > Tc)

  15. F2-Structure Function JLAB Data p d  4.2.2 Dilepton Rates: Hadronic vs. QGP dRee /dM2 ~ ∫d3q f B(q0;T) Im Pem • Hadronic and QGP rates tend to • “degenerate” toward~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!) - [qq→ee] [HTL] [RR,Wambach et al ’99]

  16. 4.2.3 Dileptons in Heavy-Ion Collisions: Spectrometer • Evolve rates over fireball expansion: m+m-Spectra at CERN-SPS In-In(158AGeV) [NA60 ‘09] Thermal m+m- Emission Rate Mmm [GeV] [van Hees+RR ’08] • thermal radiation dominant • invariant-mass spectrum directly • reflects thermal emission rate!

  17. [van Hees+RR ‘06] 4.2.4 Intermediate-Mass Region • “4p“ states dominate free EM correlator • above M ≈ 1.1GeV • lower estimate: • use vacuum4p correlator • more realistic: • O(T2)medium effect → • “chiral V-A mixing”: • with 4p 2p [Eletsky+Ioffe ‘90] 3p 5p

  18. 4.2.4.2 Intermediate-Mass Dileptons: Thermometer • QGP or Hadron Gas (HG) radition? • vary critical temperature Tcin fireball evolution - qq→m+m- pppp→m+m- (e.g. pa1→ m+m-) green: Tc=190MeV red: Tc=175MeV (default) blue: Tc=160MeV • partition QGP vs. HG depends on Tc • (spectral shape robust: dilepton rate “dual” aroundTc! ) • Initial temperature Ti ~ 190-220 MeV at CERN-SPS

  19. 4.2.5 Dimuon pt-Spectra and Slopes: Barometer pions: Tch=160MeV a┴ =0.1/fm pions: Tch=175MeV a┴ =0.085/fm • modify fireball evolution: • e.g. a┴ = 0.085/fm → 0.1/fm • both large and small Tccompatible • with excess dilepton slopes

  20. currently fails at RHIC 4.2.6 Conclusions from Dilepton “Excess” Spectra • thermal source (T~120-200MeV) • M<1GeV: in-medium r meson • - no significant mass shift • - avg. Gr(T~150MeV)~350-400MeV • Gr (T~Tc) ≈ 600 MeV → mr • - driven by baryons • M>1GeV: radiation aroundTc • fireball lifetime “measurement”: • tFB ~ (6.5±1) fm/c (semicentralIn-In) [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] Mmm [GeV]

  21. Disoriented Chiral Condensate (DCC)? [Z.Huang+X.N.Wang ‘96] - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - ptherm + pDCC → e+ e- ↔ M~0.3GeV, small pt [Bjorken et al ’93, Rajagopal+Wilczek ’93] 4.2.6 Origin of the Low-Mass Excess in PHENIX? • Soft QGP Radiation? - small Teff slope - why not in semi-central? - generic space-time argument:  maximal emission aroundTmax ≈ M / 5.5 (forImPem =const) Low mass (M<1GeV): Tmax < 200MeV

  22. p Sp Sp Sp r Sr Sr Sr 4.3 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . • in-medium p + r propagators • broadening of p-r scattering • amplitude [Cabrera et al. ’10]

  23. 5.) Conclusions • EM spectral function ↔ excitations of QCD vacuum • - ideal tool to probe hot/dense matter • Effective hadronic Lagrangian + many-body theory: • - strong r broadening in (baryonic) medium, • suppresed at large momentum (CLAS!) • Dileptons in heavy-ion collisions: • - spectro-/thermo-/baro-meter (CERES, NA50,NA60!) • - corroborate melting of r toward expected Tc = 160-190 MeV • → quark-hadron duality?! hadron liquid?! • Sum rules + axialvector spectral function to tighten • relations to (partial) chiral restoration • Future experiments at RHIC-2, FAIR +LHC

  24. 3.2.5 EM Probes in Central Pb-Au/Pb at SPS Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07] • consistency of virtual+real photons (same Pem) • very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06]

  25. 3.5.3 Composition of Mass Spectra in qt-Bins low qt intermed. qt high qt • high qt ≥ 1.5GeV: • - medium effects reduced • - non-thermal sources take over

  26. 3.5.2 Rho, Omega + Phi Freezeout from pt-Spectra r • r freezeout = fireball freezeout • adjust w and f freezeout • contribution to fit pt-spectra • sequential freezeout f → w → r • consistent with mass spectra

  27. 5.2.5 NA60 Dimuons: pt-Slopes • in-medium radiation “harder” than • hadrons at freezeout?! • (thermal radiation softer by Lorentz-1/g) • smaller Tch helps (largerTfo) • non-thermal sources (DY, …)? • additional transverse acceleration? • hadron spectra (pions)? Tch=160MeV a┴ =0.1/fm Tch=175MeV Tch=160MeV a┴ =0.085/fm Tch=160MeV

  28. f.o.+prim. p 3.3 “Non-Thermal Dilepton Sources • → relevant at M,qt ≥ 1.5 GeV (?) • primordial qq annihilation (Drell-Yan): NN → e+e- X • r mesons at thermal freeze-out (“blast-wave”): • - extra Lorentz-g factor relative to thermal radiation • - qt-spectra + yield fixed by fireball model • primordial (“hard”) r mesons: • - schematic jet-quenching • with sabs fit to pions - • late decays: p0,h → ge+e- , • DD → e+e-X, J/y→e+e- , … _

  29. 3.2.3 NA60 Excess Spectra vs. Theory [CERN Courier Nov. 2009] • Thermal source does very well • Low-mass enhancement very sensitive to medium effects • Intermediate-mass: total agrees, decomposition varies

  30. pS pS pS pS pS pP pP 2.2 Chiral + Resonance Scheme p s N+ N(1535)- r a1D+ N(1520)- N(1900)+ D(1700)-(?) D(1920)+ rS (a1)S rS • add S-wave pion → chiral partner • P-wave pion → quark spin-flip • importance of baryon spectroscopy

  31. |Fp|2 dpp 3.1 Axial/Vector Mesons in Vacuum Introduce r, a1 as gauge bosons into free p +r +a1Lagrangian p p r r-propagator: pEM formfactor ppscattering phase shift

More Related