220 likes | 319 Views
Manifestation of Novel Social Challenges of the European Union in the Teaching Material of Medical Biotechnology Master’s Programmes at the University of Pécs and at the University of Debrecen Identification number: TÁMOP-4.1.2-08/1/A-2009-0011.
E N D
Manifestation of Novel Social Challenges of the European Unionin the Teaching Material ofMedical Biotechnology Master’s Programmesat the University of Pécs and at the University of Debrecen Identification number: TÁMOP-4.1.2-08/1/A-2009-0011
Manifestation of Novel Social Challenges of the European Unionin the Teaching Material ofMedical Biotechnology Master’s Programmesat the University of Pécs and at the University of Debrecen Identification number: TÁMOP-4.1.2-08/1/A-2009-0011 Krisztián Kvell Molecular and Clinical Basics of Gerontology – Lecture 22 Aging and geneexpression –Alterations of thegenomeduetoaging
Telomere sequence andtelomerase function Telomerase A C C A A U C RNA template T G G T T A DNA G Nucleotides
Telomeres as biological clocks • Most favoredclock, butcauseor marker? • Sequence: TTAGGG hexanucleotide> 1000x • Polymeraseleavesgapwitheveryreplication • Oxidativestressacceleratestelomerelossrate
Factors influencing telomere loss rate • Telomeresformterminalloopsforstability • Role of TRF2 intelomerestability • Issue of telomerelengththreshold • Issue of telomerelossrate vs. stressrate
Changes in telomere length Extending the length of a telomere Embyonic stem cells Adult stem cells Chromosome Short end of DNA New DNA Telomere long Telomere short T T A G G G T T A G G G Active telomerase Telomerase inactive or absent A A U C C C A A U C C C A A T C C C A A T C RNA template T T A G G G Telomerase DNA polymerase A A T C C C Telomere is repetitive DNA sequence
Slowing, reversing telomere shortening • Counteracting (oxidative) stressconditions • Telomeraseactivityincreasestelomerelength • ALT: alternativetelomerelengthening
Significance of telomere in cancer Telomerase reactivation Telomere lenght Telomere crisis Normal tissue Hyperplasia Carcinoma in situ Invasive cancer Number of aberrations Genome instability Further evolution Loss of telomere function
Further clocks ticking • Solublefactors / cellnon-autonomousspreading • Pinealclock, role of melatonin • Circadianclockmechanisms • DNA methylation, acetylation, de-acetylation
Genomic instability in progeria types • Werner-syndrome • Cockaynesyndrome • Hutchinson-Guilfordprogeria • Xeroderma pigmentosum
Werner syndrome • Homozygousrecessive (skin, cataract, diabetes mellitus osteoporosis) • WRN protein (anti-recombinase, helicase, removesrecombination and repairintermediates) • Defectivetranscription (50%) • Relationwith p53 (attenuatedapoptosis) • Increasedtelomerelossrate
Cockayne syndrome • Raresegmentalprogeria (dwarfism, photosensitivity, neurologicaldegeneration etc.) • Defectintranscriptioncoupledrepair (TCR) • Defective 8-oxodG excision (50%) • Subtypes: CS-A, CS-B • Global genomerepair (GGR) is proficient
Hutchinson-Guilford progeria syndrome • Lamin A mutation (nuclearenvelopefragility) • Primerilyaffectsmesenchymaltissues • HGPS cellshavedecreasedstressresistence • Rapid progeria, prematuredeath
DNA damage: causes, results I Reactive oxygen species (ROS) DNA REPAIR (limited synthesis:small fragments) Replication errors X rays UV light Cell cycle arrest (Apoptosis) Mutations Cancer and genetic diseases Alkylating agents Spontaneous reactions
Oxidative DNA damage • > 10,000 DNA lesions / cell / day • A variety of DNA damagetypes (> 50 types) • 5 distinctivegroups • Oxidizedpurines • Oxidizedpyrimidines • Abasicsites • Single-strandbreaks • Double-strandbreaks
DNA damage: causes, results II Metabolism Exogenus DNA damage Stochastic DampenedGH/IGF axis Cellular responses(apoptosis,senescence) Mutations, epi-mutations Regulated Improved survival Tissue atrophy, lost regeneration Altered regulatory circuits Tissue/organ functional decline, degenerative or hyperplastic disease
Oxidative DNA damage repair types I • Baseexcisionrepair (BER) is most important, subtypes: AP endonucleaseorlyaserepair • Removal of oxidizedpurines (twotypesoflesions: 8-oxodG and formamido-pyrimidines) • Removal of oxidizedpyrimidines (strongblock, stronglycytotoxic) • Repair of abasicsites (most frequent) by AP endonucleases
Oxidative DNA damage repair types II • Repair of strand breaks (single-strand breaks occur 10x more frequently than doubles) • Limited mitochondrial DNA repair (nuclearencodedproteins of OGG1, POLG) • Nucleotideexcisionrepair (NER) that is transcription-coupledrepair of activegenes
Genes related to oxidative DNA damage repair • Defect is lethal: APE1, FEN1, POLB, LIG1, LIG3, XRCC1 • Defect is viable: OGG1, NTHL1, MYH, ADPRT • Severitynot tested: NEIL1, 2, 3, TDG, SMUG1, APE2
Oxidative DNA damage repair and aging • Elevatedcancerfrequencies • Werner syndrome (anti-recombinase) • Cockaynesyndrome (TCR) • XPD and XPA (repairdeficiency) • Baseexcisionrepair (BER) defect is lethal • Back-uprepairpathways
Non-oxidative DNA damage • Depurination and depyrimidination • Deamination • Single-strandbreaks • Spontaneousmethylation • Glycation • Cross-linking
Non-oxidative protein damage • Biosyntheticerrors • Transcriptionalerrors • Translationalerrors • Racemization and isomerization • Deamidation (asparagine and glutamine) • Reactivecarbonylgroups (non-oxidative) • Serinedephosphorylation