120 likes | 219 Views
GRAVITATIONAL WAVES FROM NS INTERIORS. C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) Superfluid turbulence Post-glitch relaxation Rigorous model → parametrised template → nuclear physics (viscosity, compressibility).
E N D
GRAVITATIONAL WAVESFROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) • Superfluid turbulence • Post-glitch relaxation • Rigorous model → parametrised template→ nuclear physics (viscosity, compressibility)
CONTINUOUS SOURCE C-C diff. rotation (glitches)→ nonaxisymmetric superfluid flows Long-lived (days → years) periodic signal • Superfluid turbulence as pulsar spins down (Re ≈1011) • Post-glitch relaxation (Ekman pumping) • Follows burst signal of glitch itself (msec?) Not discussed here... • R-modes continuously excited in core (Andersson et al. 99; Nayyar & Owen 06); cf. ocean r-modes (Heyl 04) • Amplitude and threshold probe superfluid core and viscous crust-core boundary layer(Lindblom & Mendell 99; Bildsten & Ushomirsky 00;Levin & Ushomirsky 01)
SUPERFLUID CIRCULATION oscillating hydro torque EKMAN PUMPING Re=104 (Peralta et al. 05, 06, 07) Differential rotation → meridional circulation • superfluid→ HVBK two-fluid model (3D) • Quantised vortices ↔ mutual friction
MACRO SF TURBULENCE TAYLOR VORTEX HERRINGBONE & SPIRAL TURBULENCE
POST-GLITCH RELAXATION • Ekman: fluid spun up in radially expanding boundary layer (meridional → Coriolis) • TEkman = (2E1/2W)-1with E =n(2WR2)-1≈ Re-1 • Buoyancy inhibits meridional flow less/more according to compressibility K • Brunt-Vaisala frequency: N2=g2(ceq-2-K-2) • Incompressible: K→ ∞.Unstratified: N→ 0 • Nonaxisymmetric perturbation exp(imf) • Wave strain:
GW SPECTRUM • Lorentzian: measure width & peak frequency • Extract two of E, N, Kif W known(X-rays) • Width ratio independent of E (i.e. viscosity) • Amplitude depends on distance, orientation, DW, and compressibilities… but not E • Pol’n ratio: orientation to line of sight (also N, K) EQUATORIAL OBSERVER
K= 0.1 N= 1 K= 0.3 h+(f) K= 1 K= 3 f N= 0.1 K = 1 h×(f) N= 0.3 N= 3 f N= 1
EXTRACTING NUCLEAR PHYSICS E K N i i i E E K N K N Total signal including current quadrupole
PHYSICS TO WORRY ABOUT • Microscopic turbulence • DGI →tangle of quantized vortices • Affects the mutual friction coupling ↓ • Macroscopic turbulence (Kolmogorov “eddies”) • Do large or small eddies dominate the GW signal?
WHAT WILL LIGO TEACH US? SF turbulence • Is the core superfluid? • Mutual friction & entrainment parameter • Viscosity • Crust-core coupling
Glitches • Measure ceqandKfor nuclear matter • Do glitches happen faster or slower than one rotation period? • Probe “seismic” (avalanche) dynamics • Spectrum of non-axisymmetric excitation NO OTHER GOOD WAY TO LEARN SUCH THINGS!