1 / 27

Inferential Statistics

Inferential Statistics. Minjuan Wang Educational Technology. *Inferential statistics. Projecting data from sample to population Signal-to-Noise Level of significance (a)/confidence level Two basic types Parametric Non-parametric. Inferential Statistics. Inferential Statistics are:

tranquilla
Download Presentation

Inferential Statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Inferential Statistics Minjuan Wang Educational Technology

  2. *Inferential statistics • Projecting data from sample to population • Signal-to-Noise • Level of significance (a)/confidence level • Two basic types • Parametric • Non-parametric

  3. Inferential Statistics • Inferential Statistics are: • Used to make inferences about populations based on the behavior of a sample • Concerned with how likely it is that a result based on a sample or samples are the same as results that might be obtained from an entire population

  4. Video from learner.org • http://learner.org/resources/series65.html# • What Is Probability? • From 0-1 • Watch the rules of probability from minutes 23 or later • 50% will find an atypical driver in NYC • Significance Tests: • Watch it from 16:20 • Confidence Intervals

  5. Examples • Homeschoolers in SD to homeschoolers in CA • Graduate students in SDSU to .. in the West Coast • Terrorists in the US to …around the world • Does a sample perfectly represents the population? • No!

  6. Function • Therefore inferential statistics identify: • How likely the sample results represent the results that would occur in the population? • 90%, 95%, or 99% • Confidence interval • By being ? Confident, we make: • probability statements that the results we see in samples would also be found in the population

  7. Level of Significance • An estimate of the probability that we are wrong when we say the results are due to chance • a=0.1, 0.05; 0.01 (10%, 5%, 1% of being wrong) • 0.10 (10%) for an exploratory test • .05 (5%) for many educational research tests • .01 (1%) if you are very confident • Comparing p with a? • Probability of the differences/effect/treatment are due to chance needs to < 0.05 (a)

  8. Types of Hypothesis • Null hypothesis • There is no change, difference or relationship between A and B • A starting point or a benchmark • Coffee maker is broken • no relationship between its broken and the humming birds on the tree outside my balcony

  9. Alternative/Research Hypothesis • Hypothesis that is implicitly accepted if the null hypothesis is rejected • Directional (one-tailed test) • Non-directional (two-tailed test) • Hypothesis: not to be proven but to be supported • Does your study fail if your hypothesis is not supported by the data?

  10. Tails of A Test • Two-tailed test (non-directional/both) • There is no difference in content acquisition between "discovery learning" and "direct instruction.“ • One-tailed test (directional/upper/lower) • difference will be in one direction only • Students who use "discovery learning" exhibit greater gains in content acquisition than students who use "direct instruction"

  11. Hypothesis Testing Procedure • Come up with a hypothesis • Set a: level of risk you are willing to take • Select the test • Compute the obtained value: t, f, r, etc. • Find the critical value in the respective table • To reject a null hypothesis->Obtained value must be > critical value • Otherwise, fail to reject null hypothesis (H0) • But, never “accept” null hypothesis • Many tests are needed to confirm that A is not different from or associated with B. • When rejecting null-P, the alternative 2-tailed P is implicitly accepted.

  12. P from Fancy Schmancy Software • Inferential statistics • T, ANOVA, Correlation, Regression • P is the probability of chance (indicator of significance) • Free us from the test tables • Results vary • P<.05 • P<.001 • P=.013 (the exact probability of the outcome/effect due to chance—SPSS) • Outcome: difference, change, or association • P>.05 or p=ns (nonsignificant) • The probability of rejecting a null-P exceeds 0.05 (the cut-off point) (Salkind) • So reject it

  13. Inferential Statistics • Two Basic Types • Parametric – techniques which make the assumption that you are working with a normal distributions and that the sample is random • Nonparametric – techniques which make few if any assumptions about the nature of the population from which the sample is taken

  14. Does Culture Make a Difference? • The survey: • Perceptions about being equal with their instructor • Chinese, American, Korean students • Tests conducted • Kruskal-Wallis Analysis of Variance • Non-parametric of ANOVA • Results and Interpretation • P=0.02 comparing with a=0.05 • ???

  15. Parametric versus Nonparametric • Parametric – • Characteristic is normally distributed in the population; sample was randomly selected; data is interval or ratio • Nonparametric • Use when you have a specialized population, you’ve not randomly selected, or data is ranked or nominal • “Cooking” • steamed versus fried • Streamed broccoli versus baked pumpkin pie • Link to a Table • Resource: http://coe.sdsu.edu/ed690/mod/mod06/default.htm

  16. Inferential Statistics • Parametric Techniques • T-Test for means • Analysis of Variance • Analysis of Covariance

  17. More: Inferential Statistics • Nonparametric Techniques for Quantitative Data • The Mann-Whitney U Test—for T(ea) for two • The Kruskal-Wallis One Way Analysis of Variance—for ANOVA • The Friedman Two-Way Analysis of Variance—for ANOVA • Nonparametric Technique for Categorical Data • Chi-Squared test of frequencies • Is there a relationship between eye and hair color?

  18. Null Hypothesis • Cultural difference and fear of fat • Mean of Australian students = 100 • Mean of Indian students = 125 • Is this difference really significant? • Due to the cultural difference? • Due to chance (such as sampling error)? • If you make a null hypothesis • There is no significant difference or relationship…. • Assuming the difference is due to chance • Chance explanation for the difference…

  19. Which Test to Use? • Tea for one or two? • Paired vs. unpaired • One: Pre- post- comparison • Two groups • ANOVA? • Chi-Square? • Correlational (Pearson r)? All these choices, you decide!

  20. What If…..? • Adding one group to the study • New Zealand • Correlational? • Chi-Square? • ANOVA?

  21. What If… • Variables are Nominal? • Is there a Statistically significant difference between EDTEC graduate students’ study preference (solo vs. teamwork)? • Data solo solo solo solo solo solo solo solo solo team team team team team team team team team team team

  22. Types of Chi-Square • A one-dimensional Chi Square • Determine if the observed frequencies are significantly different from the expected frequencies Solo Team 10 10 9 12 Testing group distribution!

  23. Types of CHI-SQUARE • A two-dimensional Chi Square • Frequencies are categorized along more than one dimensions • Gender relative to study preferences Solo Team 10 10 9 (5) 12 (10) Test the association between IV and DV Female Male

  24. Chi Square • used when data are nominal (both IV and DV) • Comparing frequencies of distributions occurring in different categories or groups • Tests whether group distributions are different • EDTEC students’ preference for solo or teamwork • Determines the association between IV and DV by counting the frequencies of distribution • Gender relative to study preference

  25. Degree of Freedom • State a null hypothesis • Select a level of significance • Select the appropriate test • Run statistics->get a result • Set degrees of freedom • The No. of instances in a distribution that is free to vary • to name 5 numbers, the mean needs to be 4 • Four numbers are free to vary (1, 2, 3, ,4) • The 5th number is set (10)

  26. Degree of Freedom • Why? • If calculate the test by hand, the intersection of P and df determine the level needed to reject the null hypothesis • Refer to T table • Each test has its own formula • No. of groups, and no. of participants • Correlation r, N-2 • T test: • one group: N-1 • two groups: N1-1+N2-1

More Related