130 likes | 282 Views
Rail Revolution or Carbon Creator? Assessing the potential for high speed rail to replace domestic flights worldwide . Holly Edwards . DTC Low Carbon Technologies Faculty Of Engineering University of Leeds, UK . Introduction .
E N D
Rail Revolution or Carbon Creator? Assessing the potential for high speed rail to replace domestic flights worldwide Holly Edwards DTC Low Carbon Technologies Faculty Of Engineering University of Leeds, UK
Introduction New transport modes have increasingly opened the door for regional development
Why High Speed Rail? • Reduction in carbon emissions • Alternative technological solution for the aviation industry • Energy security
Where in the World? Under Consideration Planned/In Construction Operational High Speed Rail
Air-Rail Partnerships • First air-rail partnership introduced in France in 1994 • High speed rail services provide the same service as that of a flight e.g. check-in at origin station including bag transfer and quick and efficient connections to onward flights. • Benefits to: • Airlines: additional capacity at airports by freeing of slots and improved network economics • High Speed Rail Operators: increase in demand for services • Airports: increased connectivity, reduced local pollution and increased catchment area.
Methodology Barcelona-Madrid Air: 2 hr 30 m HSR: 2 hr 36 m Shanghai-Beijing Air: 5 hr 0 m HSR: 4 hr 38 m Tokyo- Sapporo Air: 2 hr 30 m HSR: 5 hr 0 m LosAngeles-San Francisco Air: 2 hr 19 m HSR: 2 hr 48 m Mumbai-New Delhi Air: 3 hr 6 m HSR: 4 hr 6 m Rio de Janeiro- Sao Paulo Air: 2 hr 0 m HSR: 1 hr 25 m Johannesburg-Cape Town Air: 3 hr HSR:4 hr 30 m Sydney-Melbourne Air: 2 hr 35 m HSR: 3 hr 8 m Operational No formal plans Construction/Planning
Methodology Total Carbon Calculation for Air Travel: Where: Eair= total amount of CO2 emissions (kg) between a city pair in one year; Nflights= total number of services between a city pair in one year; FCCD = Fuel use (kg) for climb/cruise/descent stage of flight for given aircraft type; FLTO = Fuel use (kg) for landing and take-off cycle of flight for given aircraft type; EF = emissions factor for carbon dioxide of 3.157 kgCO2/kgfuel
Methodology Total Carbon Calculation for High Speed Rail: Where: EHSR = total emissions for HSR; EC = energy consumption (kWh) per seat-km; LF = load factor (%); S = number of seats required by passengers shifting from air travel; CI = carbon intensity of electricity grid (kgCO2/kWh); d = distance (km); Nflights= number of flights per annum that HSR would be replacing.
High Speed Rail Decision Factors Competitive journey times Carbon savings HSR Energy security Carbon from construction Integration of air-rail partnerships
Conclusion • Air-rail partnerships can result in significant reductions in carbon emissions. • Savings strongly depend on the carbon intensity of the grid of the country operating the HSR route • There may also be other reasons to implement partnerships for airlines, such as reducing fuel costs. • Including air-rail partnerships in the earliest stages of planning is key to achieving a effective and efficient system.
Thank you Holly Edwards pmhae@leeds.ac.uk