1 / 15

Geometry Sections 4.3 & 4.4 SSS / SAS / ASA

Geometry Sections 4.3 & 4.4 SSS / SAS / ASA.

Download Presentation

Geometry Sections 4.3 & 4.4 SSS / SAS / ASA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometry Sections 4.3 & 4.4SSS / SAS / ASA

  2. To show that two triangles are congruent using the definition of congruent polygons, as we did in the proof at the end of section 4.1, we need to show that all ____ pairs of corresponding parts are congruent. The postulates introduced below allow us to prove triangles congruent using only ____ pairs of corresponding parts.

  3. Postulate 19: SSS (Side-Side-Side) Postulate If 3 sides of one triangle are congruent to 3 sides of a second triangle, then the triangles are congruent.

  4. We need to consider the following definitions to help us understand the next two postulates.In a triangle, an angle is included by two sides, if the angle In a triangle, a side is included by two angles, if the side is formed by the two sides. is between the vertices of the two angles.

  5. Postulate 20: SAS (Side-Angle-Side) PostulateIf two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

  6. Why does the angle have to be the included angle? Why can’t we have ASS? Well, other than the fact that it is a bad word, ASS doesn’t always work to give us congruent triangles. Consider the following counterexample.

  7. Postulate 21: ASA (Angle-Side-Angle) PostulateIf two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the triangles are congruent.

  8. Example 3: Determine whether each pair of triangles can be proven congruent by using the congruence postulates. If so, write a congruence statement and identify the postulate used. None is a possible answer.

More Related