1 / 56

What can we learn about neutrinos from cosmology?

What can we learn about neutrinos from cosmology?. Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark. What have we learned so far?. Flyabout + SDSS movie. Brief History of the Universe. Fluctuation generator. Fluctuation amplifier. Hot Dense Smooth.

trixie
Download Presentation

What can we learn about neutrinos from cosmology?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark

  2. What have we learned so far?

  3. Flyabout + SDSS movie

  4. Brief History of the Universe Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team)

  5. To 0th order: Fluctuation generator Fluctuation amplifier Hot DenseSmooth H(z) Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team) Cosmological functions (z), G(z,k), Ps(k), Pt(k)

  6. To 1st order: Fluctuation generator Fluctuation amplifier Hot Dense Smooth H(z) P(k,z) Cool Rarefied Clumpy (Graphics from Gary Hinshaw/WMAP team) Cosmological functions

  7. H = dlna/dt, H2   Assumes k=0 SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, 241302 Vanilla rules OK!

  8. Measuring clustering (That’s where the neutrino signal is)

  9. History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496

  10. Boomzoom z = 1000

  11. Boomzoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

  12. Boomzoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

  13. Boomzoom z = 0 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

  14. 1parmovies CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  15. Cmbgg OmOl

  16. 1parmovies CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  17. 000619 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

  18. 1parmovies LSS

  19. 1parmovies Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  20. 1parmovies CMB Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  21. History (Figure from Wayne Hu) (Figure from WMAP team)

  22. History

  23. History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496

  24. Boomzoom Guth & Kaiser 2005, Science

  25. 1parmovies CMB Clusters LSS Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  26. 1parmovies CMB Clusters LSS Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  27. Boomzoom Lyman Alpha Forest Simulation: Cen et al 2001 LyF Quasar You

  28. 1parmovies CMB Clusters LSS Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  29. 1parmovies CMB Clusters LSS Lensing Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  30. GRAVITATIONAL LENSING: A1689 imaged by Hubble ACS, Broadhurst et al 2004

  31. distortion Lensing

  32. 1parmovies CMB Clusters LSS Lensing Ly Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  33. 000619 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

  34. 1parmovies CMB Clusters LSS Lensing Lya Tegmark & Zaldarriaga, astro-ph/0207047 + updates

  35. Measuring cosmological parameters

  36. Neutrinos

  37. Boomzoom How neutrinos suppress cosmic fluctuation growth • If all the matter can cluster: da • If only a fraction W* can cluster: dap, where • p=[(1+24 W*)-1]/4≈ W*3/5 ≈ (1-fn)3/5 • (Bond, Efstathiou & Silk 1980) Net growth until today: atoday/aprimordial ≈ 4700p ≈ 4700 e-4fn Power suppression: P(k)/P(k)primordial ≈ e-8fn fn≈ ∑ mni /94.4 eV wdm ≈ ∑ mni /12 eV, So 1 eV cuts power in half. Distinguish neutrinos from dark energy by time and scale dependence.

  38. Cmbgg OmOl

  39. Cmbgg OmOl

  40. Cmbgg OmOl CMB

  41. Cmbgg OmOl CMB + P(k)

  42. Cmbgg OmOl CMB + P(k) + LyaF

  43. THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra

  44. Boomzoom Now: • WMAP CMB + SDSS gals & LyaF: ∑ mni < 0.4 eV Seljak et al, astro-ph/0407372, Goobar et al astro-ph/0602155 Future: • Planck CMB + LSST lensing: s(∑ mni) ~ 0.04 eV E.g., Hu & Tegmark astro-ph/9811168, Hu astro-ph/9904153, Hannestad et al, astro-ph/0603019

  45. Galaxy clustering progress

  46. Why are LRGs so useful?

  47. SDSS sphere anim

  48. History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496 Last scattering surface

  49. Our observable universe LSS Last scattering surface

More Related