1 / 26

A Turing machine computing the reverse function (Figure 7.11)

A Turing machine computing the reverse function (Figure 7.11). JianSyuan Wong. q 0 ∆aabb. q 0 ∆aabb Ⱶ ∆q 1 aabb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb Ⱶ ∆Aaq 2 bb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb Ⱶ ∆Aaq 2 bb Ⱶ ∆Aabq 2 b. q 0 ∆aabb.

truda
Download Presentation

A Turing machine computing the reverse function (Figure 7.11)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Turing machine computing the reverse function(Figure 7.11) JianSyuan Wong

  2. q0∆aabb

  3. q0∆aabb Ⱶ ∆q1aabb

  4. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb

  5. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb

  6. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b

  7. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆

  8. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b

  9. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA

  10. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA

  11. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA

  12. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA

  13. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA

  14. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A

  15. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA

  16. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA

  17. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA

  18. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA

  19. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A

  20. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆

  21. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A

  22. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa

  23. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa

  24. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa

  25. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa Ⱶ q9∆bbaa

  26. q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa Ⱶ q9∆bbaa Ⱶ ha∆bbaaaccept

More Related