260 likes | 417 Views
A Turing machine computing the reverse function (Figure 7.11). JianSyuan Wong. q 0 ∆aabb. q 0 ∆aabb Ⱶ ∆q 1 aabb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb Ⱶ ∆Aaq 2 bb. q 0 ∆aabb Ⱶ ∆q 1 aabb Ⱶ ∆Aq 2 abb Ⱶ ∆Aaq 2 bb Ⱶ ∆Aabq 2 b. q 0 ∆aabb.
E N D
A Turing machine computing the reverse function(Figure 7.11) JianSyuan Wong
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa Ⱶ q9∆bbaa
q0∆aabb Ⱶ ∆q1aabb Ⱶ ∆Aq2abb Ⱶ ∆Aaq2bb Ⱶ ∆Aabq2b Ⱶ ∆Aabbq2∆ Ⱶ ∆Aabq3b Ⱶ ∆Aaq7bA Ⱶ ∆Aq7abA Ⱶ ∆q7AabA Ⱶ ∆Bq1abA Ⱶ ∆BAq2bA Ⱶ ∆BAbq2A Ⱶ ∆BAq3bA Ⱶ ∆Bq7AAA Ⱶ ∆Bq7AAA Ⱶ ∆BBq1AA Ⱶ ∆BBAq8A Ⱶ ∆BBAAq8∆ Ⱶ ∆BBAq9A Ⱶ ∆BBq9Aa Ⱶ ∆Bq9Baa Ⱶ ∆q9Bbaa Ⱶ q9∆bbaa Ⱶ ha∆bbaaaccept