360 likes | 584 Views
Analysis of Variance (ANOVA). Penjelasan Umum. Seringkali kita ingin menguji apakah tiga atau lebih populasi memiliki rata-rata yg sama . Contoh : Apakah bahan bakar /km yg digunakan untuk beberapa merek mobil sama ? Apakah pendapatan pekerja pada beberapa lapangan pekerjaan sama ?
E N D
PenjelasanUmum • Seringkalikitainginmengujiapakahtigaataulebihpopulasimemiliki rata-rata ygsama. • Contoh: • Apakahbahanbakar/km ygdigunakanuntukbeberapamerekmobilsama? • Apakahpendapatanpekerjapadabeberapalapanganpekerjaansama? • Atauapakahbiayaproduksiygmenggunakanbeberapaprosesygberbedaadalahsama?
PenjelasanUmum • Kita dapatmenggunakancarasepertiyglaluuntukmengujikesamaan rata-rata duapopulasi, tetapihaltersebutakanmemakanwaktudanperhitunganyglebih lama. Contoh: jikaada 5 pop, makaada5C2cara/perhitunganygharusdilakukan. • Untukitukitadapatmelakukanujisecarasimultan /keseluruhanpopulasitersebutdenganmenggunakandistribusi F danmetodaygdisebut ANOVA (Analysis of Variance)
One-Way Analysis of Variance • Assumptions • Populations are normally distributed • Populations have equal variances • Samples are randomly and independently drawn
HipotesisuntukOne-Way ANOVA • Seluruh rata-rata populasiadalahsama • Artinya: Tidak ada efek treatment (tidak ada keragaman rata-rata dalam kelompok) • Minimal salahsatu rata-rata populasiada yang tidaksama • Artinya: Terdapat efek treatment (terdapatkeragaman rata-rata dalamkelompok) • Tidakberartibahwasemua rata-rata populasitidaksama (beberapapasangmungkinsama)
One-Factor ANOVA All Means are the same: The Null Hypothesis is True (No Treatment Effect)
One-Factor ANOVA (continued) At least one mean is different: The Null Hypothesis is NOT true (Treatment Effect is present) or
Partitioning the Variation • Total variation can be split into two parts: SST = SSB + SSW SST = Total Sum of Squares SSB = Sum of Squares Between SSW = Sum of Squares Within
Partitioning the Variation (continued) SST = SSB + SSW Total Variation = jumlahkuadrat total (SST), yang mengukurkeragaman total dalam data Between-Sample Variation = keragamanantarkelompokpopulasi(SSB) Within-Sample Variation = kergamandidalammasing-masingkelompokpopulasi(SSW)
Commonly referred to as: Sum of Squares Within Sum of Squares Error Sum of Squares Unexplained Within Groups Variation Partition of Total Variation Total Variation (SST) Variation Due to Factor (SSB) Variation Due to Random Sampling (SSW) + = • Commonly referred to as: • Sum of Squares Between • Sum of Squares Among • Sum of Squares Explained • Among Groups Variation
Total Sum of Squares SST = SSB + SSW Dimana: SST = Total sum of squares (Jumlahkuadrat total) k = jumlahpopulasi (kelompok, level atautreatment) ni = sample size daripopulasike-i xij = pengamatanke-jthdaripopulasike-i x = rata-rata total (rata-rata dariseluruh data)
Total Variation (continued)
Sum of Squares Between SST = SSB + SSW Dimana: SSB = Sum of squares between k = jumlahpopulasi (kelompok, level, atautreatment) ni = sample size daripopulasike-i xi = rata-rata sample daripopulasike-i x = rata-rata total (rata-rata dariseluruh data)
Between-Group Variation Variation Due to Differences Among Groups Mean Square Between = SSB/degrees of freedom
Between-Group Variation (continued)
Sum of Squares Within SST = SSB + SSW Dimana: SSW = Sum of squares within k = jumlahpopulasi (kelompok, level, atautreatment) ni = sample size daripopulasike-i xi = rata-rata sample daripopulasike-i xij = pengamatanke-jthdaripopulasike-i
Within-Group Variation Summing the variation within each group and then adding over all groups Mean Square Within = SSW/degrees of freedom
Within-Group Variation (continued)
One-Way ANOVA Table Source of Variation SS df MS F ratio SSB Between Samples MSB SSB k - 1 MSB = F = k - 1 MSW SSW Within Samples SSW N - k MSW = N - k SST = SSB+SSW Total N - 1 k = jumlahpopulasi (kelompok, level, atautreatment) N = jumlahseluruhpengamatan df = derajatbebas
One-Factor ANOVAF Test Statistic • Test statistic MSB is mean squares between variances MSW is mean squares within variances • Degrees of freedom • df1 = k – 1 (k = number of populations) • df2 = N – k (N = sum of sample sizes from all populations) H0: μ1= μ2 = …= μk HA: At least two population means are different
Interpreting One-Factor ANOVA F Statistic • The F statistic is the ratio of the between estimate of variance and the within estimate of variance • The ratio must always be positive • df1 = k -1 will typically be small • df2 = N - k will typically be large The ratio should be close to 1 if H0: μ1= μ2 = … = μk is true The ratio will be larger than 1 if H0: μ1= μ2 = … = μk is false
You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the .05 significance level, is there a difference in mean distance? One-Factor ANOVA F Test Example Club 1Club 2Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204
One-Factor ANOVA Example: Scatter Diagram Distance 270 260 250 240 230 220 210 200 190 Club 1Club 2Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 • • • • • • • • • • • • • • • 1 2 3 Club
One-Factor ANOVA Example Computations Club 1Club 2Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 x1 = 249.2 x2 = 226.0 x3 = 205.8 x = 227.0 n1 = 5 n2 = 5 n3 = 5 N = 15 k = 3 SSB = 5 [ (249.2 – 227)2 + (226 – 227)2 + (205.8 – 227)2 ] = 4716.4 SSW = (254 – 249.2)2 + (263 – 249.2)2 +…+ (204 – 205.8)2 = 1119.6 MSB = 4716.4 / (3-1) = 2358.2 MSW = 1119.6 / (15-3) = 93.3
H0: μ1 = μ2 = μ3 HA: μi not all equal = .05 df1= 2 df2 = 12 One-Factor ANOVA Example Solution Test Statistic: Decision: Conclusion: Critical Value: F = 3.885 Reject H0 at = 0.05 There is evidence that at least one μi differs from the rest = .05 0 Do not reject H0 Reject H0 F= 25.275 F.05 = 3.885
Uji Wilayah Berganda • Dari hasil pengujian kesamaan rata-rata populasi dgn ANOVA, jika keputusan adalah menolak Ho. Maka kita dapati kesimpulan bahwa tidak semua µ sama (paling sedikit ada dua yang tidak sama). Namun kita tidak tahu mana yang berbeda. • Untukmencariµ manayang berbeda nyata → UJI WILAYAH BERGANDA DUNCAN DAN UJI TUKEY x μ μ μ = 1 2 3
Uji Duncan Prosedur: • Urutkan rata-rata sampeluntukmasing-masingpopulasi (kelompok) dari yang terkecilhinggaterbesar • Hitungwilayahnyataterpendekdariberbagai rata-rata
Uji Duncan • Kriteriapengujian Bandingkanselisihkedua rata-rata yang ingindilihatperbedaannyadengankriteriasbb: • xi – xj ≤ Rp (Tidakberbedanyata) • xi – xj > Rp (Berbedanyata)
1. Urutkan rata-rata sampel: Contoh: Uji Duncan Club 1Club 2Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 α = 0.05, df = 12 2.Hitungwilayahnyataterpendekdariberbagai rata-rata:
Contoh: Uji Duncan • Bandingkanselisih rata-rata denganRp:
UjiTukey-Kramer Dimana: q = Nilaidaristandardized range table dengandf = k danN - k MSW = Mean Square Within nidannj = Sample sizes daripopulasi (kelompok) ke-i & ke-j
1. Compute absolute mean differences: Contoh: UjiTukey-Kramer Club 1Club 2Club 3 254 234 200 263 218 222 241 235 197 237 227 206 251 216 204 2. Find the q value from the table Tukeywith k and N - k degrees of freedom for the desired level of
Contoh: UjiTukey-Kramer 3. Compute Critical Range: 4. Compare: 5. All of the absolute mean differences are greater than critical range. Therefore there is a significant difference between each pair of means at 5% level of significance.