330 likes | 539 Views
Bero-transmisio mekanismoak. G. Beroa 3 mekanismoren bitartez transmititu daiteke:. KONDUKZIOA (Fourier-en legea) KONBEKZIOA (Newton-en hozketa-legea) ERRADIAZIOA (Stefan-Boltzman-en legea). T 2. Q. T 1. KONDUKZIOA Tenperatura eremua = (x,y,z,t )
E N D
G Beroa 3 mekanismoren bitartez transmititu daiteke: • KONDUKZIOA (Fourier-en legea) • KONBEKZIOA (Newton-en hozketa-legea) • ERRADIAZIOA (Stefan-Boltzman-en legea) T2 Q T1
KONDUKZIOA • Tenperatura eremua = (x,y,z,t ) • Tenperatura gradientea Grad = (/n) n z n • Grad = = (/x) i + (/y) j + (/z) k x y Fourier-en legea : q = Q/A = - k (θ) q = qx i+ qy j+ qz k= -[ kx () ] i - [ky () ] j - [kz () ] k
Kondukzioaren ekuazio orokorra: qz+dz z qx qG qy qy+dy qx+dx y qG= elementuan barne garatutako beroa (W/m3) qz x Energia-balantzea eginez: dQsartu + dQgaratu = dQirten + dEmetatu dQsartu = qx dydz + qy dxdz + qz dxdy dQgaratu = qG dV dQirten = qx+dx dydz + qy+dy dxdz + qz+dz dxdy dEmetatu = cp /t dm = dV cp /t
qx dydz + qy dxdz + qz dxdy + qG dV = qx+dx dydz + qy+dy dxdz + qz+dz dxdy + dV cp /t Fourier aplikatuz: qx = -k()/x Taylor-en seriean garatuz: qx+dx = qx + (qx/x) dx qx + [ (-k()/x) / x ] dx qG dV = [ (-k()/x) / x ] dxdydz + [ (-k()/y) / y ] dydxdz + [ (-k()/z) / z ] dz dxdy + dV cp /t = [ -k() ] dV + dV cp /t qG = [ -k() ] + cp /t
Hipotesiak: • materiale isotropoa K()x = K()y = K()z • propietate fisikoak konstanteak K() = K = Kte • qG = kte Kondukzioaren ekuazio orokorra k 2 + qG = cp /t • 2 = laplaziarra: • Koordenatu kartesiarretan 2 = 2/x2 + 2/y2 + 2/z2 • Koordenatu zilindrikotan 2 = 1/r (r/r)/r + 1/r2 2/2 + 2/z2 • Koordenatu esferikotan 2 = 1/r2 (r2/r)/r + ...
Errejimen egonkorrean /t = 0 k 2 + qG = 0 1.kondukzioaren ekuazio orokorra ebatzi tenperatura-distribuzioa (ariketaren ingurune baldintzak aplikatuz) 2. Fourier-en legea aplikatu bero-transmisioa Aztertuko ditugun kasuak: • Pareta laua bero-garapenarekin eta garapenik gabe • Pareta zilindrikoa “ “ • Pareta esferikoa “ “
1. Kasua: pareta laua bero-garapenarekin k 2 + qG = cp /t • = ( x,y,z,t ) Errejimen egonkorra Fluxu unidimentsionala p p qG = ( x ) x Q k 2 + qG = 0 L L non 2 = 2/x2 = d2 /dx2 k 2 + qG = k d2 /dx2 + qG = 0 d2 /dx2 = -qG/k d/dx = -qG x / k + C1 (x) = -qGx2/2k + C1 x + C2
p p qG x Q L L (x) C1 eta C2 integrazio konstanteak kalkulatzeko, ingurune baldintzak aplikatu: 1.ingurune baldintza: x= 0 qx=0 d/dx = 0 2. Ingurune baldintza: x = + L = p 1.i.b. aplikatuz: d/dx = 0 = -qG/k 0 + C1 C1 = 0 2.i.b. aplikatuz: p = -qG L2 /2k + 0 + C2 C2 = p + qG L2 /2k Paretan barneko tenperatura-distribuzioa (x) = -qG (L2 -x2 )/2k + p
Fourier-en legea aplikatuz: Qx = - k A = -k A d/dx = -k A ( -qGx/k ) Qx= A qG x Paretatik kanpo guzira transmititutako bero-jarioa: Q = Qx = L + Qx = -L = 2AL qG = V qG
2. Kasua: pareta laua bero-garapenik gabe k 2 + qG = cp /t 1 (x) k 2 = 0 Kasu honetan qG = 0 2 2 = d2 /dx2 = 0 d/dx = C1 (x) = C1 x + C2 Q x L 1.ingurune baldintza: x = 0 = 1 2. Ingurune baldintza: x = L = 2 Ordezkatuz: (x) = (2 - 1) x/L + 1
Fourier-en legea aplikatuz: Qx = - k A = -k A d/dx = -k A C1 = Q = k A ( 1 - 2 )/ L Analogia elektrikoa: Ohm-en legea Fourier-en legea I = V2-1 / R Q = 2-1 / (L / k A ) Pareta lauaren erresistentzia termiko baliokidea: RTP = L / k A I 1 2 Q V1 V2 k L R
Pareta konposatuak: k1 1 k2 R2 R3 R1 k3 Q 4 Q L1 L2 L3 Q = ( 1 - 4 )/ ( R1 + R2 + R3 ) k1 R1 1 Q Q k2 R2 2 k3 R3 L Q = ( 1 - 2 ) x ( 1/R1 +1/ R2 + 1/R3 )
z p p qG r Q R 3. Kasua: pareta zilindrikoa bero-garapenarekin k 2 + qG = cp /t • = ( r, ,z,t ) Errejimen egonkorra Fluxu unidimentsionala • = ( r ) k 2 + qG = 0 k2 + qG = 0 = k [1/r d(rd/dr)/dr] + qG 1/r d(rd/dr)/dr = -qG/k d(rd/dr)/dr = - r qG/k rd/dr = - r2 qG/2k + C1 d/dr = - r qG/2k + C1/r (r) = - r2 qG/4k + C1 lnr + C2
1.ingurune baldintza: r= 0 qr=0 d/dr = 0 2. Ingurune baldintza: r = R = p 1.i.b. aplikatuz: d/dr = 0 C1 = 0 2.i.b. aplikatuz: p = -qG R2 /4k + 0 + C2 C2 = p + qG R2 /4k z Ordezkatuz: (r) = p + qG ( R2 - r2 ) /4k p r Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 2 r L ( - r qG/2k ) = L r2 qG Qr = L r2 qG = V qG = QG
z 2 1 Q r2 r1 4. Kasua: pareta zilindrikoa bero-garapenik gabe k 2 + qG = cp /t Kasu honetan qG = 0 k 2 = 0 2 = 0 = [1/r d(rd/dr)/dr] r 1/r d(rd/dr)/dr = 0 d(rd/dr)/dr = 0 rd/dr = C1 d/dr = C1/r (r) = C1 lnr + C2 1.ingurune baldintza: r= r1 = 1 2. Ingurune baldintza: r = r2 = 2
1.i.b. aplikatuz: 1 = C1 lnr1 + C2 2.i.b. aplikatuz: 2 = C1 lnr2 + C2 C1 = ( 1 - 2 ) / ln ( r1 / r2 ) C2 = 1 - lnr1 [( 1 - 2 ) / ln ( r1 / r2 )] (r) = [( 1 - 2 ) / ln ( r1 / r2 )]lnr + 1 - lnr1 [( 1 - 2 ) / ln ( r1 / r2 )] (r) = [( 1 - 2 )ln ( r / r1 ) / ln ( r1 / r2 )] + 1 1 r 2
Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 2 r L( 1 - 2 ) / r ln ( r1 / r2 ) = Qr = ( 1 - 2 ) / [ ln ( r2 / r1 ) / 2 k L ] Pareta zilindrikoaren erresistentzia termiko baliokidea: RTZ = ln ( r2 / r1 ) / 2 k L Pareta konposatuak: R2 R1 r1 r2 r3 Q R1 = ln ( r2 / r1 ) / 2 k1 L R2 = ln ( r3 / r2) / 2 k2 L
R 5.Kasua: pareta esferikoa bero-garapenarekin k 2 + qG = cp /t • = ( r, ,z,t ) Errejimen egonkorra Jario unidimentsionala = ( r ) k2 + qG = 0 = k [1/r2 d(r2d/dr)/dr] + qG 1/r2 d(r2d/dr)/dr = -qG/k d(r2d/dr)/dr = - r2 qG/k r2d/dr = - r3 qG/3k + C1 d/dr = - r qG/3k + C1 / r2 (r) = - r2 qG/6k - C1 / r + C2 1.ingurune baldintza: r = 0 qr=0 d/dr = 0 2. Ingurune baldintza: r = R = p
1.i.b. aplikatuz: d/dr = 0 C1 = 0 2.i.b. aplikatuz: p = -qG R2 /6k + 0 + C2 C2 = p + qG R2 /6k Ordezkatuz: (r) = p + qG ( R2 - r2 ) /6k Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 4 r2 (- r qG/3k ) = 4/3 ( r3 ) qG Qr = 4/3 ( r3 ) qG = V qG = QG Q
r2 r1 6. Kasua: pareta esferikoa bero-garapenik gabe k 2 + qG = cp /t 2 = 0 = 1/r2 d(r2d/dr)/dr d(r2d/dr)/dr = 0 r2d/dr = C1 d/dr = C1 / r2 (r) =C1 / r + C2 1.ingurune baldintza: r= r1 = 1 2. Ingurune baldintza: r = r2 = 2 1.i.b. aplikatuz: 1 = C1 /r1 + C2 2.i.b. aplikatuz: 2 = C1 / r2 + C2 C1 = ( 1 - 2 ) / ( 1/r1 - 1/r2 ) C2 = 1 - ( 1 - 2 ) / r1 ( 1/r1 - 1/r2 )
r2 r1 (r) =C1 / r + C2 = ( 1 - 2 ) / r ( 1/r1 - 1/r2 ) + 1 - ( 1 - 2 ) / r1 ( 1/r1 - 1/r2 ) = (r) = 1 + ( 1 - 2 ) · [ ( 1/r - 1/r1 ) / ( 1/r1 - 1/r2 ) ] Fourier-en legea aplikatuz: Qr = - k A = -k A d/dr = -k 4 r2 ( 1 - 2 ) / r2( 1/r1 - 1/r2 ) = Qr = ( 1 - 2 ) / [( 1/r2 - 1/r1 )/ 4 k ] Pareta esferikoaren erresistentzia termiko baliokidea: RTE = ( 1/r2 - 1/r1 )/ 4 k = ( r2 -r1 )/ [r2 r1 4 k ] RTE Q I
KONBEKZIOA Fluidoaren molekulen arteko distantzia handia dela eta, kondukzio bidezko bero-transmisioarekiko erresistentzia termikoa handia da. Molekulen arteko loturak aulak izanik, bero dagoen molekula fluidoan barne mugi daiteke, berarekin batera energia termikoa garraiatuz bero-transmisioa. Materia garraio bitartez gertatzen den bero-transmisio mekanismo honi KONBEKZIO deritzaio.
Konbekzio bidezko bero-transmisioa, faktore askoren araberakoa da: • Jariakinaren abiadura ( c ) • Ukipen-azaleraren geometria eta ezaugarriak • Jariakinaren propietate fisikoak ( , ) • Solidoaren propietate fisikoak ( k , cp ) • etab. Denak laburbiltzeko, koefiziente bat erabiltzen da: h = konbekzio-koefiziente edota pelikula-koefizientea. h pelikula-koefizientea, korrelazio esperimentalen bitartez kalkulatzen da.
Q = h A Newton-en hozketa-legea: h ( W/m2K) Analogia elektrikoa: R Q I h R = 1 / h A
b h2 R2 R3 R1 1 h1 2 k Q Q Q L k KONDUKZIOA KONBEKZIOA U : Bero-transmisio koefiziente orokorra KONBEKZIOA R = R1 + R2 + R3 = 1/A ( 1/h1 + L/k + 1/h2 ) Q = ( b - k ) / R = A ( b - k ) / [ 1 / h1 )+ L / k + 1 / h2 ] U =1 / [ 1 / h1 )+ L / k + 1 / h2 ] Q = U A
h2 R2 R3 R1 h1 Q Q Q KONDUKZIOA KONBEKZIOA KONBEKZIOA R = R1 + R2 + R3 = 1/2L ( 1/r1h1 + 1/k ln(r2/r1) + 1/r2h2 ) Q = ( b - k ) / R = 2 r2 L ( b - k ) / [ (r2 / r1 h1 )+ ( r2 / k )ln(r2/r1) + 1 / h2 ] Q = U2 A2 U2 =1 / [ (r2 / r1 h1 )+ ( r2 / k )ln(r2/r1) + 1 / h2 ]
KONBEKZIO BEHARTUA Reynolds zenbakia: Jariakinaren inertzia indarren eta liskatasun indarren arteko erlazioa. Re = c / Prandtl zenbakia: Jariakinean barne beroa zein abiaduraz transmititzen den adierazten du. Pr = cP / k Nusselt zenbakia: jarikaina eta paretaren arteko bero-transmisioa adierazten du. Nu = h / k Parametro hauen arteko erlazioa esperimentalki lortu behar da, ereduekin entsaiatuz. Nu = f ( Re,Pr )
c c ZENBAIT KORRELAZIO ESPERIMENTAL • 1.kasua: Tutueria baten barnekaldeko konbekzioa, jarioa zurrunbilotsua denean. = 4A/Pbustita = D n=3 hoztutzen bada n= 4 berotzen bada Dittus-Boelter Nu = 0,023 Re 0,8 Pr n D.B. aplikatzeko baldintzak: - Re >2100 (zurrunbilotsua) - parametro adimentsionalak jariakinaren batazbesteko tenperaturan
L xkr • 2.kasua: Gainazal lau batean zeharreko konbekzio behartua. Parametroak pelikula- -batazbesteko tenperaturan neurtuak: m = ( p + f ) / 2 = L Fluxu laminarra NuL = 0,664 ReL1/2 Pr 1/3 Re < 5·104 5·105 L xkr Fluxu zurrunbilotsua Re > 5·104 5·105 Nu = 0,036 ReL0,8 Pr 1/3 L xkr Fluxu mistoa L xkr Nu = 0,036 Pr 1/3 (ReL0,8 -23.200)
c Churchill-Bernstein = D • 3.kasua: Zilindro baten kanpokaldeko gainazalarekiko korronte gurutzatu baten konbekzio behartua. Parametroak pelikula- -batazbesteko tenperaturan neurtuak: = D Nu = 0,3+ [(0,62 Re1/2Pr 1/3)/ [1+(0,4/Pr)2/31/4 · [1+(Re/282.000)1/2 • 4.kasua: Esfera baten kanpokaldeko gainazalarekiko korronte gurutzatu baten konbekzio behartua. Whitaker Nu = 2+(0,4Re1/2+0,06Re2/3)Pr0,4
KONBEKZIO NATURALA Konbekzio bidezko bero-trukea egoteko beharrezkoa den jariakinaren mugimendua, tenperatura-diferentzia batek eragindako dentsitate-diferentziaren ondorioz gertatzen denean, konbekzio naturala deritzaio. Erabiliko diren parametro adimentsionalak, Nu, Pr, eta Grashof zenbakia dira. Grashof zenbakia: Jariakinaren igotze indarren eta liskatasun indarren arteko erlazioa. Gas idealetan : = 1/T Gr = g32 / 2 Grashof zenbakia handiagoa den neurrian, handiagoa izango da jariakinaren mugimendu librea
h = 1,32 [ (-f) / D ]1/4 104< Gr <109 h = 1,25 (-f)1/3 109< Gr <1012 = D = gainazal tenperatura f = jariakinaren tenperatura h = 1,42 [ (-f) / L ]1/4 104< Gr <109 = L h = 1,31 (-f)1/3 109< Gr <1012 Gr·Pr > 108 jario zurrunbilotsua • 1.kasua: Zilindro horizontal baten kanpokaldeko gainazalarekiko konbekzio naturala. • 2.kasua: Plaka bertikal baten gainazalarekiko konbekzio naturala.