1 / 23

Time evolution of QGP via photon observables

Time evolution of QGP via photon observables. Presenter : Imre Májer – Eötvös University Physics student Supervisor : Máté Csanád – Department of Atomic Physics. Zimányi Winter School 2011. Rhic milestones. New, strongly interacting medium ( Nucl.Phys ., A757:184–283, 2005 )

turner
Download Presentation

Time evolution of QGP via photon observables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Time evolution of QGP via photon observables Presenter: Imre Májer – Eötvös University Physicsstudent Supervisor: Máté Csanád – Department of AtomicPhysics Zimányi Winter School 2011

  2. Rhicmilestones • New, stronglyinteractingmedium (Nucl.Phys., A757:184–283, 2005) • Collectivebehaviour (Phys.Rev.Lett., 91:182301, 2003) • Perfect fluid hydro (Phys.Rev.Lett., 98:172301, 2007) • Quarkdegrees of freedom (Phys.Rev.Lett. 98, 162301,2007) • Directphotondata, timeevolutioncan be analyzed (Phys.Rev.Lett., 104:132301, 2010)

  3. Time development - Spectra thermalization

  4. Spectrainformation Physical quantitieswecangetfromdifferentspectra: • Hadronicspectra • Freeze-outtemperature () • Freeze-outtime () • Freeze-outexpansionvelocities (, , , , ) • Photonspectra • Equation of state () • Thermalizationtime () • Initialtemperature ()

  5. PhysicalQuantities Howdowegetthephysicalquantitiesdescribingthesystem?

  6. The probability of particlecreationat a givenplace and timewith a given momentum: • Photons: bosonsBose-Einsteindistribution – Cooper-Fryefactorgivestheintegrationmeasure • Integratethesourcefunction: invariant momentum distribution One of the most importantobservable!

  7. Relativistic hydroforperfectfluids: • Equation of state () • Assuming an avarage constant • Idealsolution: • Relativistic • 1+3 dimensional • Realistic (eg. ellipsoidal) geometry • AnisotropicHubble-flow ( const.)aftersometime • Acceleratingatthe start of thetimedevelopment

  8. Someknownsolutions:

  9. The examinedsolution (Csörgő et al., 2004): • Relativistic, 1+3 dimensional • Scalingparameter – ellipsoidalsymmetry: • Arbitraryfunction of thescalingparameter: is thegoodtemperaturegradient • Hubble-flow: • Non-accelerating:

  10. 3.Observables – rapidity () 3D: 2D: Fourier series of theazimuthaldistributionfunction InverseFourier-transformtransverse momentum distributionand elliptic flow Bose-Einsteincorrelation: correlationradii (HBT radii)

  11. Fixed byhadronspectrum fit: (M. Csanád – M. Vargyas: Eur.Phys.J., A44:473–478, 2010.) Properties of the fit:

  12. Photon momentum distribution Fitting to0-92% centrality PHENIX data: EoSfromphotonspectra:

  13. QGP initialtemperature With and , hydrogivesustheinitialtemperature: Determinedfromphotonspectra Fixed fromhadronicobservables

  14. Photonelliptic flow Ellipticflow from PHENIX data [arXiv:1105.4126]: • Many models fail • Non-hydro effects from2 GeV • Sign change possible

  15. Bose-Einsteincorrelation HBT radiiatfreeze-outtime (): • Rout/Rside = 1 for hadrons • RoutRside here, differenttimeevolution!

  16. Furtheranalysis Other microscopicmodels: additionalscalingwith needed with (orifvelocity is temperaturedependent) Ourmodelalready Examined with use ofadditional minor change, systematic error N=0 N=2 N=1 N=3

  17. Summary • 1+3D realisticrelativistichydromodelwithoutacceleration • Calculated, and HBT radiiforphotonsource • Fitted withfreeze-outparameters fixed byhadronsolution • Importantnewparameters: EoSand initialtemperature: MeV • Correspondstoothertheories(R. A. Lacey, A. Taranenko., PoS, CFRNC2006:021, 2006: ; A. Adare et al., Phys.Rev.Lett., 104:132301, 2010: )

  18. Thankyouforyourattention!

  19. The analyticsolution The exactanaliticresult of thesecondorder Gaussian approximation: arethecoefficients of thefirstkindmodifiedBessel-functions

  20. Dependencies of N1(pt) Smalldependenceoninitialtime SensitivitytoEoS

  21. Initialtime EoS Eccentricity Dependencies of v2(pt)

  22. Signchange of v2atlowpt-s

  23. Azimuthaldependence of HBT radii

More Related