1 / 40

Digital Signal Processing II

Digital Signal Processing II. Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.be homes.esat.kuleuven.be/~moonen/. Digital Signal Processing II. General Intro Aims/Scope: Why study DSP ? DSP in applications : GSM, ADSL… Overview Activities:

tyson
Download Presentation

Digital Signal Processing II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital Signal Processing II Marc Moonen Dept. E.E./ESAT, K.U.Leuven marc.moonen@esat.kuleuven.be homes.esat.kuleuven.be/~moonen/

  2. Digital Signal Processing II • General Intro • Aims/Scope: Why study DSP ? DSP in applications : GSM, ADSL… • Overview • Activities: Lectures - Course Notes/Literature Homeworks/Exercise sessions Project Exam • Review of Discrete-time Signals&Systems(10-slides) Version 2006-2007Lecture-1 Introduction

  3. IN OUT IN 2 OUT +2 A/D D/A =4 Why study DSP ? • Analog Systems vs. Digital Systems - translate analog (e.g. filter) design into digital - going `digital’ allows to expand functionality/flexibility/… (e.g. how would you do analog speech recognition ? analog audio compression ? …? ) Version 2006-2007Lecture-1 Introduction

  4. DSP in applications : GSM Cellular mobile telephony (e.g. GSM) • Basic network architecture : -country covered by a grid of cells -each cell has a base station -base station connected to land telephone network and communicates with mobiles via a radio interface -digital communication format Version 2006-2007Lecture-1 Introduction

  5. .99,.01,.96,.95,.07,… Transmitter 1,0,1,1,0,… Channel Receiver decision x + x 1,0,1,1,0,… 1/a a noise DSP in applications : GSM • DSP for digital communications (`physical layer’ ) : • a common misunderstanding is that digital communications is `simple’…. • While in practice… Version 2006-2007Lecture-1 Introduction

  6. DSP in applications : GSM • DSP for digital communications (`physical layer’ ) : • In practice… • This calls for channel modeling + compensation (equalization) !! .59,.41,.76,.05,.37,… Transmitter 1,0,1,1,0,… `Multipath’ Channel Receiver ?? + 1,0,1,1,0,… noise Version 2006-2007Lecture-1 Introduction

  7. DSP in applications : GSM • GSM specs/features : • Multi-path channel is modeled with short (3…5 taps) FIR filter H(z)= a+b.z^-1+c.z^-2+d.z-3+e.z^-4 (interpretation?) • Channel is highly time-varying (e.g. terminal speed 120 km/hr !) • Channel coefficients (cfr. a,b,c,d,e) are identified in receiver based on transmission of pre-defined training sequences, in between data bits (problem to be solved is : `given channel input and channel output, compute channel coefficients’) • This leads to a least-squares parameter estimation procedure (cfr. Algebra, 1ste kand !!!) • Channel model is then used to design suitable equalizer (`channel inversion’), or (better) for reconstructing transmitted data bits based on Maximum-likelihood sequence estimation (`Viterbi decoding’) • All this is done at `burst-rate’ (>100/sec) = SPECTACULAR !! Version 2006-2007Lecture-1 Introduction

  8. DSP in applications : GSM • GSM specs/features (continued): - Multiplexing: Capacity increase by time & frequency `multiplexing’ FDMA : e.g. 125 frequency channels for GSM/900MHz TDMA : 8 time slots(=users) per channel, `burst mode’ communication (PS: in practice, capacity per cell << 8*125 ! ) - Speech coding : Original `PCM’-signal has 64kbits/sec = 8 ksamples/sec * 8bits/sample Reduce this to <11kbits/sec, while preserving quality Coding based on speech generation model (vocal tract,…), least-squares paramater estimation (again!), etc. - Etc.. = BOX FULL OF DSP/MATHEMATICS !! Version 2006-2007Lecture-1 Introduction

  9. DSP in applications : ADSL Telephone Line Modems • voice-band modems : up to 56kbits/sec in 0..4kHz band • ADSL modems : up to 8Mbits/sec in 30kHz…1MHz band (3,5…5km) • VDSL modems : up to 52Mbits/sec in …12MHz band (0.3…1.5km) How has this been made possible? X 1000 Version 2006-2007Lecture-1 Introduction

  10. DSP in applications : ADSL Communication Impairments : • Channel attenuation • Received signal may be attenuated by more than 60dB ps: more attenuation at high (MHz) frequencies ps: this is why for a long time, only the voiceband (up to 4kHz) was used • Frequency-dependent attenuation introduces ``inter-symbol interference’’ (ISI). ISI channel can (again) be modeled with an FIR filter. Number of taps will be much larger here (>500!) Version 2006-2007Lecture-1 Introduction

  11. DSP in applications : ADSL Communication Impairments : • Coupling between wires in same or adjacent binders introduces `crosstalk’ • Near-end Xtalk (NEXT) (=upstream in downstream, downstream in upstream) • Far-end Xtalk (FEXT) (=upstream in upstream, downstream in downstream) Meaning that a useful signal may be drowned in (much larger) signals from other users.. …leading to signal separation and spectrum management problems • Other : • Radio Frequency Interference (AM broadcast, amateur radio) • Echo due to impedance mismatch • Etc.. Conclusion: Need advanced modulation, DSP,etc. ! Version 2006-2007Lecture-1 Introduction

  12. DSP in applications : ADSL • ADSL spectrum : divide available transmission band in 256 narrow bands (`tones’), transmit different sub-streams over different sub-channels (tones)(=DMT, `Discrete Multi-tone Modulation’) Version 2006-2007Lecture-1 Introduction

  13. DSP in applications : ADSL ADSL-DMT Transmission block scheme : DFT/IDFT (FFT/IFFT) based modulation/demodulation scheme pointer : www.adslforum.com PS: do not try to understand details here... Version 2006-2007Lecture-1 Introduction

  14. DSP in applications : ADSL ADSL specs • 512-point (I)FFT’s (or `similar’) for DMT-modulation FFT-rate = 4.3215 kHz (i.e. >4000 512-point FFTs per second !!!!) • basic sampling rate is 2.21 MHz(=512*4.3215k) 8.84 MHz A/D or D/A (multi-rate structure) • fixed HP/LP/BP front-end filtering for frequency duplex • adjustable time-domain equalization filter (TEQ) e.g. 32 taps @ 2.21 MHz filter initialization via least-squares/eigenvalue procedure • adaptive frequency-domain equalization filters (FEQ) VDSL specs • e.g. 4096-point (I)FFT’s, etc…. = BOX FULL OF DSP/MATHEMATICS !! Version 2006-2007Lecture-1 Introduction

  15. DSP in applications : Other… • Speech (HK-17) Speech coding (GSM, DECT, ..), Speech synthesis (text-to-speech), Speech recognition • Audio Signal Processing (HK-17) Audio Coding (MP3, AAC, ..), Audio synthesis Editing, Automatic transcription, Dolby/Surround, 3D-audio,. • Image/Video (HD-05) • Digital Communications Wireline (xDSL,Powerline), Wireless (GSM, 3G, Wi-Fi, WiMax CDMA, MIMO-transmission,..) • … Version 2006-2007Lecture-1 Introduction

  16. DSP in applications Enabling Technology is • Signal Processing 1G-SP: analog filters 2G-SP: digital filters, FFT’s, etc. 3G-SP: full of mathematics, linear algebra, statistics, etc... • VLSI • etc... H197 (JVDW) DSP-I (PW) DSP-II Version 2006-2007Lecture-1 Introduction

  17. DSP-II Aims/Scope • Basic signal processing theory/principles filter design, filter banks, optimal filters & adaptive filters • Recent/Advanced Topics robust filter realization, perfect reconstruction filter banks, fast adaptive algorithms, ... • Often `bird’s-eye view’ skip many mathematical details (if possible…  ) selection of topics (non-exhaustive) Version 2006-2007Lecture-1 Introduction

  18. Overview (I) • INTRO : Lecture-1 • Part I : Filter Design & Implementation Lecture-2 : IIR & FIR Filter Design Lecture-3 : Filter Realization Lecture-4 : Filter Implementation Version 2006-2007Lecture-1 Introduction

  19. 3 subband processing 3 G1(z) H1(z) OUT IN 3 subband processing 3 G2(z) H2(z) + 3 subband processing 3 G3(z) H3(z) 3 subband processing 3 G4(z) H4(z) Overview (II) • Part II: Filter Banks & Subband Systems Lecture-5 : Filter Banks Intro/Applications (coding/CDMA/…) Lecture-6/7 : Filter Banks Theory Lecture-8 : Special Topics (Frequency-domain processing, Wavelets,…) . Version 2006-2007Lecture-1 Introduction

  20. Overview (III) • Part III : Optimal & Adaptive Filtering Lecture-9 : Optimal/Wiener Filters Lecture-10: Adaptive Filters/Recursive Least Squares Lecture-11: Adaptive Filters/LMS Lecture-12: `Fast’ Adaptive Filters Lecture-13: Kalman Filters . Version 2006-2007Lecture-1 Introduction

  21. IFFT P/S S/P Discrete equivalent channel FFT FEQ r(t) ADC DAC p(t) ch(t) Tx filter Channel Rx filter Tx clock Rx clock Overview (IV) • OUTRO : Lecture 14: Case study ADSL/VDSL modems Version 2006-2007Lecture-1 Introduction

  22. Prerequisites H197: `Systeemtheorie en Regeltechniek’ (JVDW) HJ09: `Digitale Signaalverwerking I’ (PW) signaaltransformaties, bemonstering, multi-rate, DFT, … H001: `Toegepaste Algebra en Analytische Meetkunde’ (JVDW) Version 2006-2007Lecture-1 Introduction

  23. Literature / Arenberg Library • A. Oppenheim & R. Schafer `Digital Signal Processing’(Prentice Hall 1977) • L. Jackson `Digital Filters and Signal Processing’(Kluwer 1986) • P.P. Vaidyanathan `Multirate Systems and Filter Banks’(Prentice Hall 1993) • Simon Haykin `Adaptive Filter Theory’(Prentice Hall 1996) • M. Bellanger `Digital Processing of Signals’(Kluwer 1986) • etc... Part-I Part-II Part-III Version 2006-2007Lecture-1 Introduction

  24. Literature / DSP-II Library • Collection of books is available to support course material • List/info/reservation via DSP-II webpage • contact: Vincent.LeNir@esat (E) Version 2006-2007Lecture-1 Introduction

  25. Activities : Lectures Lectures: 14 * 2 hrs Course Material: • Part I-II-III :Slides (use version 2006-2007 !!) ...download from DSP-II webpage • Part III :`Introduction to Adaptive Signal Processing’, Marc Moonen & Ian.K. Proudler = bijkomende info, geen examenstof ! …(if needed) download from DSP-II webpage Version 2006-2007Lecture-1 Introduction

  26. Activities : Homeworks/Ex. Sessions • `Homeworks’ …to support course material • 6 Matlab/Simulink Sessions …to support homeworks …come prepared !! • contact: Geert.Rombouts@esat Sam.Corveleyn@esat Sylwester.Szczepaniak@esat (E) Vincent.LeNir@esat (E/F) Version 2006-2007Lecture-1 Introduction

  27. Activities : Project • Discover DSP technology in present-day systems examples: 3D-audio, music synthesis, automatic transcription, speech codec, MP3, GSM, ADSL, … • Select topic/paper from list on DSP II webpage (submit 1st/2nd choice by Oct.4 to geert.rombouts@esat) • Study & internet surfing • Build demonstration model & experiment in Matlab/Simulink • Deliverable : • Intermediate presentation (.ppt or similar) : Oct. 24/27 • Final presentation, incl. Matlab/Simulink demonstration : Dec. (20 mins per group) • Software • Groups of 2 Version 2006-2007Lecture-1 Introduction

  28. Activities : Project Topics/Papers • List available under DSP-II web page • Other topics : subject to approval ! (email 1/2-page description to geert.rombouts@esat before Oct. 4) Tutoring geert.rombouts@esat + 14 other research assistants/postdocs All .PPT presentations will be made available (www), maar behoren niet tot examen-leerstof Version 2006-2007Lecture-1 Introduction

  29. Activities : Examen • Mondeling, schriftelijk voorbereiding • Open boek • Inzicht-/denkvragen, geen rekenoefeningen 5 for question-1 5 for question-2 5 for question-3 5 for project (software/presentation) ___ = 20 Version 2006-2007Lecture-1 Introduction

  30. homes.esat.kuleuven.be/~rombouts/dspII • Contact: geert.rombouts@esat • Slides • Homeworks • Projects info/schedule • Examenvragen 2000-2001, .. • DSP-II Library • FAQs (send questions to geert.rombouts@esat or marc.moonen@esat ) Version 2006-2007Lecture-1 Introduction

  31. u[k] y[k] Review of discrete-time systems 1/10 Discrete-time (DT) system is `sampled data’ system: Input signal u[k] is a sequence of samples (=numbers) ..,u[-2],u[-1],u[0],u[1],u[2],… System then produces a sequence of output samples y[k] ..,y[-2],y[-1],y[0],y[1],y[2],… Will consider linear time-invariant (LTI) DT systems: Linear : input u1[k] -> output y1[k] input u2[k] -> output y2[k] hence a.u1[k]+b.u2[k]-> a.y1[k]+b.y2[k] Time-invariant (shift-invariant) input u[k] -> output y[k], hence input u[k-T] -> output y[k-T] Version 2006-2007Lecture-1 Introduction

  32. `Toeplitz’ matrix Review of discrete-time systems 2/10 Causal systems: iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0 Impulse response: input …,0,0,1,0,0,0,...-> output …,0,0,h[0],h[1],h[2],h[3],... General inputu[0],u[1],u[2],u[3]:(cfr.linearity!) Version 2006-2007Lecture-1 Introduction

  33. u[0],u[1],u[2],u[3] y[0],y[1],... h[0],h[1],h[2],0,0,... Review of discrete-time systems 3/10 Convolution: = `convolution sum’ Version 2006-2007Lecture-1 Introduction

  34. Review of discrete-time systems 4/10 Z-Transform: H(z) is `transfer function’ Version 2006-2007Lecture-1 Introduction

  35. Review of discrete-time systems 5/10 Z-Transform : • input-output relation • may be viewed as `shorthand’ notation (for convolution operation/Toeplitz-vector product) • stability bounded input u[k] -> bounded output y[k] --iff --iff poles of H(z) inside the unit circle (for causal,rational systems) Version 2006-2007Lecture-1 Introduction

  36. u[k] y[k]=u[k-1] u[k] y[k] + a x Review of discrete-time systems 6/10 Example-1 : `Delay operator’ Impulse response is …,0,0,0, 1,0,0,0,… Transfer function is Example-2 : Delay + feedback Impulse response is …,0,0,0, 1,a,a^2,a^3… Transfer function is Version 2006-2007Lecture-1 Introduction

  37. Review of discrete-time systems 7/10 Will consider only rational transfer functions: • In general, these represent `infinitely long impulse response’ (`IIR’) systems • N poles (zeros of A(z)) , N zeros (zeros of B(z)) • corresponds to difference equation • Hence rational H(z) can be realized with finite number of delay elements, multipliers and adders Version 2006-2007Lecture-1 Introduction

  38. Review of discrete-time systems 8/10 Special case is • N poles at the origin z=0 (hence guaranteed stability) • N zeros (zeros of B(z)) = `all zero’ filters • corresponds to difference equation =`moving average’ (MA) filters • impulse response is =`finite impulse response’(`FIR’)filters Version 2006-2007Lecture-1 Introduction

  39. Im u[2] u[1] Re u[0]=1 Review of discrete-time systems 9/10 H(z) & frequency response: • given a system H(z) • given an input signal = complex sinusoid • output signal : = `frequency response’ = H(z) evaluated on the unit circle Version 2006-2007Lecture-1 Introduction

  40. Review of discrete-time systems 10/10 H(z) & frequency response: • periodic : period = • for a real impulse response h[k] Magnitude response is even function Phase response is odd function • example (`low pass filter’): Nyquist frequency Version 2006-2007Lecture-1 Introduction

More Related