1 / 48

语义网的逻辑基础 Logical Foundation of the S emantic Web

语义网的逻辑基础 Logical Foundation of the S emantic Web. 主讲: 黄智生 Zhisheng Huang Vrije University Amsterdam, The Netherlands huang@cs.vu.nl 助教: 胡伟 Wei Hu Southeast University whu@seu.edu.cn. 课程时间表 Schedule. 讲座2:描述逻辑导论 Lecture 2: Introduction to Description Logics. 描述逻辑是什么? 描述逻辑基本系统 描述逻辑种类

tyson
Download Presentation

语义网的逻辑基础 Logical Foundation of the S emantic Web

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 语义网的逻辑基础Logical Foundation of the Semantic Web 主讲: 黄智生 Zhisheng Huang Vrije University Amsterdam, The Netherlands huang@cs.vu.nl 助教: 胡伟 Wei Hu Southeast University whu@seu.edu.cn

  2. 课程时间表Schedule

  3. 讲座2:描述逻辑导论Lecture 2: Introduction to Description Logics • 描述逻辑是什么? • 描述逻辑基本系统 • 描述逻辑种类 • 描述逻辑实例

  4. 描述逻辑是什么? What are Description Logics? • 描述逻辑是一类知识表示语言表达应用领域的概念定义(有可以被看作为专业术语知识)Description logics (DL) are a family of knowledge representation languages which can be used to represent the concept definitions of an application domain (known as terminological knowledge)

  5. 描述逻辑简史 A Brief History of Description Logics • Major focus of KR research in the 80’s • Led by Ron Brachman – (AT&T Labs) • Grew out of early network-based KR systems like semantic networks and frames. • Major systems and languages – • 80s: KL-ONE, NIKL, KANDOR, BACK, CLASSIC, LOOM • 90s: FACT, RACER, • 00s: DAML+OIL, OWL • Used as the basis for the Semantic web languages DAML+OIL and OWL • Some (one) commercial systems

  6. 概念与本体Concepts and Ontologies • Philosophical discipline, branch of philosophy that deals with the nature and the organisation of reality. • Science of Being (Aristotle, Metaphysics, IV,1) • What is being? • What are the features common to all beings?

  7. Vocabulary and Ontology • Controlled vocabulary (Jernst 2003) : • a list of controlled terms • unambiguous • non-redundant definition • Ontology: a controlled vocabulary expressed in an ontology representation language (Jernst 2003)

  8. In computer science … • An ontology is an explicit specification of a conceptualization. [Gruber93] • An ontology is a shared understanding of some domain of interest. [Uschold, Gruninger96] • There are many definitions • a formal specification EXECUTABLE • of a conceptualization of a domain COMMUNITY • of some part of world that is of interest APPLICATION • Defines • A common vocabulary of terms • Some specification of the meaning of the terms • A shared understanding for people and machines

  9. Why develop an ontology? • To make domain assumptions explicit • Easier to change domain assumptions • Easier to understand and update legacy data • To separate domain knowledge from operational knowledge • Re-use domain and operational knowledge separately • A community reference for applications • To share a consistent understanding of what information means.

  10. 本体的主要特征Key features of an Ontology • 概念层次性Concept hierarchy, • 概念包含关系concept subsumption • 特殊与一般关系InstanceOf Relation (Instances) • 部分与整体关系PartOf Relation (property)

  11. Why not other alternatives • 一阶谓词逻辑 the first-order predicate logic • 集合论 set theory • 程序语言 programming languages

  12. 概念与分类 • 设定存在一个所有个体(Individual)的集合 • 一个概念被看成是一个个体的集合(Set of individuals) • 定义一个概念就是确定一个分类 • 概念集合与个体集合是不相交的 • 个体上的一个二元关系集合被称为一个性质(Property/Role)

  13. 复合概念 • 概念的否定, 交 与并 C D CD

  14. 描述逻辑 Description Logic Knowledge Base Tbox (schema)术语部分 Man ´ Human u Male Happy-Father ´ Man u9 has-child Female u … Interface Inference System Abox (data)断言部分 John : Happy-Father hJohn, Maryi : has-child

  15. 描述逻辑 Description Logic Knowledge Base Tbox (schema)术语部分 Interface Abox (data)断言部分 Inference System Rbox (data)关系部分 Has-daughter v has-child

  16. Basic Description Logic: AL (Attributive Language) • Concept Expressions: • A (原子概念atomic concept) •  (全概念,universal concept) •  (空概念,bottom concept) •  A (原子否定,atomic negation) • C ⊓D (并,intersection) • R.C (值限制,value restriction) • R.T (有限存在量化limited existential quantification) where A is a concept name, C and D are concept expressions, and R is a role expression

  17. Family of AL-Language • U: C t D (交union) • E: R.C (完全存在量化full existential quantification) • N: (数量限制Number restrictions) • ( n R) (至少限制at least restriction) • ( n R) (最多限制at most restriction) • C: (Negation): : C • AL EN =AL + [E]+ [N] • Smallest propositionally closed DL is ALC (equiv modal K(m)) • Concepts constructed using u, t, :, 9 and 8

  18. Examples woman ≡ person ⊓ female man ≡ person ⊓woman mother ≡ woman ⊓hasChild.person father ≡ man ⊓hasChild.person

  19. 一个实例Example • whitehorse ≡ horse ⊓ white. • color(white). • whitehorse ≡ horse ⊓ hasColor. {white}. • 这里white是一个列名(nominal) • whitehorse ≡ horse ⊓ hasColor. {white} ⊓ hasColor. {white}.

  20. AL句法规则 •  ,   AL • p AtomicConcept => p  AL, • p AtomicConcept => p  AL, • C , D  AL =>C ⊓D  AL, • C  AL , R  Role=> R.C  AL, • R  Role => R.T  AL

  21. 描述逻辑的语义模型 一个描述逻辑语言DL上的一个语义模型M=(S, {R1, R2,… Rn}, V) 这里S是所有可能个体(Individual)的集合 Ri SXS 是一个S上的二元关系 V: P ->PowerSet(S)是一个赋值函数,它给一个原子概念赋予S的一个子集。

  22. 对照:模态逻辑的语义模型 • 命题模态逻辑语言L上的一个语义模型M=(S, A, V) • 这里S是可能世界的集合 • A SXS 是一个可达世界的关系 • V: P ->PowerSet(S)是一个赋值函数,它给一个原始命题赋予一个可能世界子集。 • 所以说,一个描述逻辑实质上就是一个多模态逻辑

  23. 描述逻辑AL的真值条件 • M, s |= p if s V(p) • M, s |= p iff M, s |=\= p • M, s |= C ⊓ D iff M, s |= C and M, s |= D • M, s |= R.C iff M, s’ |=C for all s’ such that <s,s’>  R 想想看:  ,  , R.T 对应的真值条件是什么

  24. DL Semantics • Semantics defined by interpretations • An interpretation I = (DI, ¢I), where • DI is the domain (a non-empty set) • ¢I is an interpretation function that maps: • Concept (class) name A! subset AI of DI • Role (property) name R! binary relation RI over DI • Individual name i!iI element of DI

  25. DL Semantics (cont.) • Interpretation function ¢I extends to concept (and role) expressionsin the obvious way, e.g.:

  26. 规范的AL语义 • {x}I = {xI} • {p }I =S/ pI • {C ⊓ D }I = {C} I {D}I • {R.C}I = {x |y(<x,y>  RI =>y  CI} 这里I被称作一个解释( Interpretation), 实质上就是一个模型。

  27. Axioms define relations between concepts • 概念包含(Subsumption): C v D iff CI DI 定义: • 概念相等(Equivalence): C  D iff C vD而且 DvC • 概念不相交(Disjointness): C  ⊓ D  

  28. General Concept Inclusion Expressivity with GCIs • Disjointness : C ⊓ D v • Identity: {a} v {b} • Distinctiveness : {a} ⊓ {b} v

  29. DL Knowledge Base • A DL Knowledge baseK is a pair hT ,Ai where • T is a set of “terminological” axioms (the Tbox) • A is a set of “assertional” axioms (the Abox) • Tbox axioms are of the form: • CvD, C´D, RvS, R´S and R+vR • where C,D concepts, R, S roles, and R+ set of transitive roles • Abox axioms are of the form: • x:D, hx,yi:R • where x,y are individual names, D a concept and R a role

  30. More about Family of AL Language • Additional letters indicate other extension, e.g.: • H for role inclusion axioms (role hierarchy) • O for nominals (singleton classes, written {x}) • I for inverse roles • Q for qualified number restrictions (of form 6nR.C, >nR.C) • S often used for ALC with transitive roles (R+) • SHIQ: ALC + R+ + role hierarchy + inverse roles + Q

  31. SHOIN • SHION: • S: ALC + role transitivity • H: role hiersrchies • O: nominals • I: Inverse roles • N: cardinality restriction • SHOIN(D) = OWL-DL • D: datatypes

  32. Knowledge Base Semantics • An interpretationI satisfies (models) a Tbox axiom A (I²A): • I²CvD iff CIµDII²C´D iff CI = DI • I²RvS iff RIµSII²R´S iff RI = SI • I²R+vR iff (RI)+µRI • Isatisfiesa TboxT (I²T ) iff I satisfies every axiom A in T • An interpretationI satisfies (models) an Abox axiom A (I²A): • I²x:D iff xI2DII²hx,yi:R iff (xI,yI) 2RI • Isatisfies an AboxA (I²A) iff I satisfies every axiom A in A • Isatisfies an KBK (I²K) iff I satisfies both T and A

  33. Reasoning Tasks for Concept

  34. Reduction to Subsumption

  35. Reduction to Unsatisfiability

  36. Reducing Unsatisfiability • The followings are equivalent:

  37. 描述逻辑系统命名规则DL Naming • Basic description logic is ALC (equiv modal K(m)) • Concepts constructed using u, t, :, 9 and 8 • S often used for ALC with transitive roles • Additional letters indicate other extension, e.g.: • H for role inclusion axioms (role hierarchy) • O for nominals (singleton classes, written {x}) • I for inverse roles • N for number restrictions (of form 6n R, >n R) • Q for qualified number restrictions (of form 6 n R.C, > n R.C) • …

  38. DL-Lite: A “Scalable” DL Family • R  AtomicRole =>R, R-  BasicRole • A  AtomicConcept =>A BasicConcept, • R  AtomicRole => R  BasicConcept • C BasicConcept=> C, C GeneralConcept • R BasicRole=> R, R GeneralRole

  39. Simplified DL-Lite Syntax Rules • R ->P|P- • B ->A|  R • C->B|  B • E ->R|  R Where R is basic role, P is atomic role, A is atomic concept, B is basic concept, C is general concept, E is general role

  40. DL-Lite Family • DL-Litecore Tbox is a set of inclusion axioms of the from B v C • DL-LiteR = DL-Litecore + role inclusion axioms of the from R v E • DL-LiteF = DL-Litecore + functionality on role or on their inverse with the form (funct R)

  41. 想一想: DL-Lite能不能表达下列描述? • A1 tA2v C • B v C1⊓C2 • Disjoint(A,B) • A1 ⊓A2v C • B v C1tC2

  42. 思考:描述逻辑的下一步扩展? 想一想,如果让你对现有的描述逻辑的表达功能进行扩展,你将会添加一些什么? 为什么?如何对其进行形式化描述? • 今天下午:描述逻辑与知识表示的专题讨论

  43. 练习题 • 思考题2.1:如何用描述逻辑来表示下列一些概念? • “至少有一个女孩的女人” • “没有女孩的女人” • “所有女孩都上学的女人” • “有一个女孩不上学的女人”

  44. 练习题 • 思考题2.2 用ALC语言能不能来表示下列一些概念? 为什么? • “有3个女孩的女人” • “最大的孩子是女孩的女人” • “非女青年人” • “所有的女儿都没上学的女人”

  45. 练习题 • 思考题2.3 判断下列一些公式哪些是满足的,哪些是不可满足的,哪些是永真的? • (8R. :C) u C • (8R. :C) u 9 R.C • (8R. :C) t 9 R.C • (8R. C) t9 R.T.

  46. 练习题 • 思考题2.4. 证明DL-LiteF不满足有限模型性(Finite Model Property), • 并分析其问题特征。 • 一个逻辑具有有限模型性 则表明其任何一个公式集如果是可满足的,那么必存在它的一个有限模型。

  47. 语义网逻辑基础演义 第二回:本体为纲描述逻辑展头角 概念当先形式方法显风采 欲知后事如何,请听下回分解。。。

  48. Questions and Discussions

More Related