160 likes | 371 Views
Dynamical effects in mutifragmentation at intermediate energies. titre. for the INDRA collaboration. Jean Colin, Daniel Cussol. E. Plagnol PRC 61, 014606 (2000) ; B. Davin PRC 65, 064614 (2002); L. Gingras PRC 65, 054613 (2002);... . influence-Ebeam. BINARY BREAKUPS. Xe+Sn.
E N D
Dynamical effects in mutifragmentation at intermediate energies titre for the INDRA collaboration Jean Colin, Daniel Cussol
E. Plagnol PRC 61, 014606 (2000) ; B. Davin PRC 65, 064614 (2002); L. Gingras PRC 65, 054613 (2002);...
influence-Ebeam BINARY BREAKUPS Xe+Sn INDRA Xe+Sn =0.2-0.4 Mo+Mo 12.5 MeV/u 25 MeV/u 32 MeV/u 39 MeV/u 45 MeV/u b 18.7 MeV/u 0.8-1 plane 0.7-0.8 P.Glassel Z.Phys.A310 189-216(1983) 0.6-0.7 A.A Stefanini Z.Phys.A351 167-186(1995) 0.5-0.6 plane F.Bocage NPA 676 (2000) 391-408
Ta+Au system at 39.6A MeV the heaviest fragment the second heaviest fragment the third heaviest fragment the fourth heaviest fragment beam axis Z vZ qF/QP vQP vc.m. qQP
Ni + Ni 52A MeV U+U 24A MeV Xe +Sn 50A MeV Ta+Au 33A MeV
beam axis Z qF/QP vQP vZ BINARY BREAKUPS U+U system 24A MeV U+C system Z Vc.m VZ the « hierarchy effect » is observed for very different system (except for light targets) cosqF/QP J. Colin PRC 67 064603 (2003)
beam axis vZ Z1 qprox vrel Z2+… qQP Internal correlations Ta+Au system 39.6A MeV
beam axis vZ Z1 qprox vrel qQP Z2+… U+C system at 24A MeV
MIMF = 2 beam axis Z1 qF/QP vQP Vc.m VZ2 VZ1 × Z2
Z 80 - 60 - J.F. Lecolley PLB 354 (1995) 202-207 40 - 20 - 0 - 0 1000 2000 3000 ZTLF residue in coïncidence with(Z1+Z2) fissionningPLF ZPLF residue in coïncidence with(Z1+Z2) fissionning TLF Binary breakup for the Pb+Au system at 29A MeV Nautilus TKE(MeV) T1 , T2 , T3 N1/Z1, N2/Z2, N3/Z3 J. Colin NPA 593 (1995) 48-68 ZTLFin coïncidence with(Z1+Z2) fissionningTLF
Comparison to a Classical NBody Dynamics Model D. Cussol PRC 65 054614 (2002) 50+50; Ecm/N 120 esu
Summary The decay mode of a given nucleus depends on the entrance channel The heaviest fragment is more often than not the fastest and is aligned on the PLF recoil velocity: « hierarchy effect » It is relevant to study the internal correlation (Vr-prox) Strong constraints for models The energy repartition depends on the entrance channel To reproduce the aligned component: models with entrance channel are needed The aligned component and the correlations are compatible with a neck emission Thanks: my friends from LPC and Indra collaboration
Pb + Au 29A MeV v* 0. -1. -1. 0. -1. -1. cos y* y*