1 / 5

Thermal Equilibrium

Heat Examples Heat up Water from 21C to 95C m = 1 kg c = 4180 Q = mc D T Q = (1)(4180)(95 – 21) Q = 309,320 Joules. Thermal Equilibrium. Two objects at different temperatures will eventually reach a common temp T f ? Heat Gained = Heat Given mc D T = mc D T

ulema
Download Presentation

Thermal Equilibrium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heat Examples Heat up Water from 21C to 95Cm = 1 kg c = 4180Q = mcDTQ = (1)(4180)(95 – 21)Q = 309,320 Joules

  2. Thermal Equilibrium • Two objects at different temperatures will eventually reach a common temp Tf? • Heat Gained = Heat Given • mcDT = mcDT • Example Soup (m = 1 kg, c = 4180, T=95) Mixed with a bowl (m=.8kg, c=800, T=20) (1)(4180)(95-T) = (.8)(800)(T-20) 397100 – 4180T = 640T – 12800 409900 = 4820T T = 85 0C

  3. Latent Heat = the heat required to change the state of the object (liquid to gas, solid to liquid) • Lf = 3.35 E 5 J/kg (to melt ice, freeze water) • Lv = 2.26 E 6 J/kg (to make steam, condense water) • Q = mL • Water at densest point at 4 0C

  4. Problem Solving Hints • If ice is below 0, use mcDT and the c for ice, to warm ice. • At 0 the ice melts, use mLf • Between 0 and 100, it is water, use mcDT and the c for water, to warm water. • At 100 the water converts to steam, use mLv. • Above 100, use mcDT and the c for steam.

  5. Linear Expansion • All objects expand with increase in temperature, contract with decrease in temperature. • DL= L0aDT L0 is original length at original temperature, a is the expansion coefficient, and DT is the change in temperature. You are solving for the change in length.

More Related