110 likes | 232 Views
“Real” Signal Processing with Wireless Sensor Networks. György Orosz, László Sujbert, Gábor Péceli {orosz,sujbert,peceli}@mit.bme.hu Department of Measurement and Information Systems Budapest University of Technology and Economics , Hungary
E N D
“Real” Signal Processing with Wireless Sensor Networks György Orosz, László Sujbert, Gábor Péceli {orosz,sujbert,peceli}@mit.bme.hu Department of Measurement and Information Systems Budapest University of Technology and Economics, Hungary Regional Conference on Embedded and Ambient Systems–RCEAS 2007 Budapest, Hungary, Nov.22-24, 2007
Wireless signal processing • „Real” signal processing • Fast changing signals • Hard real-time operation • Advantages of Wireless Sensor Networks (WSNs) • Easy to install • Flexible arrangement • Difficulties of utilization of WSN: • Data loss • Limit of the network bandwidth • Lots of autonomous systems • Sensor network from signal processing aspects • Topics • Signal sensing • Synchronization • Distributed signal processing
microphone mote1 mote2 moteN DSP codec DSP board moteG gateway mote reference signal ANC: a case study • Plant to be controlled: acoustic system • Noise sensing: Berkeley micaz motes • Actuators: active loudspeakers • Gateway: network DSP • Signal processing: • DSP board • ADSP-21364 32 bit floating point • 330 MHz • 8 analog output channels • Motes • TinyOS • ATmega128 • Sensor boards • Identification
activeloudspeaker DSP board gateway mote sensor mote Physical arrangement
Sampling precision 1. Sampling with low priority Shared timer Sampling with high priority Dedicated timer
Deviation from average period ( td ) t Average period Sampling precision 2. □Middle level timing priority □25 samples size packets □Effects of disturbances • Random disturbance: contributes to noise • Periodic disturbance : spurious spectrum lines Increasing deviation (td) from periodic disturbance
Tn-2 Tn-1 Tn TS_mote tmote Tt Tt Tt dti–1 dti tDSP Ti-2 Ti-1 Ti TS_DSP dt Tt TS_mote:sampling rate of the motes TS_DSP:sampling rate of the DSP Tt:data transmission delay Synchronization 1. • Delay: Td = Tt + dt • Unsynchronized subsystems: • Changing delay • Stability problems in feedback systems • Goal: constant delay • Tt=const.: deterministic protocol • dt=const.: synchronization
Tn tmotes Physical synch. Tt Interp. tDSP Interpolation Ti Synchronization 2. • Physical synchronization: • Sampling frequencies are the same • Tuning of the timers • Interpolation: Signal value is estimated in signal processing points • Algorithm transformation: algorithm parameters are transformed into Ta (when data arrived). • Synchronization in the ANC system: • Motes: physical • MotesDSP: linear interpolation • tsyst1 Td1 Td2 • tsyst2 Tn Td1=Td2=const d1 f(t) d2 Ti t d3 dt TSmote Ta: arrival time of data
Data transmission methods Data transmission methods Transmission of row data • 1.8 kHz sampling frequency on the motes • Synchronization of WSNDSP • LMS and resonator based ANC algorithms • Bandwidth restriction: about 3 sensors Transformed domain data transmission • 1.8 kHz sampling frequency on the motes • Transmission of Fourier-coefficients • Increased number of sensors:8 sensors (expansion possible)
mote1 moteN DSP FA ANC algorithm R(z) FA FA reference signal Distributed ANC system • Fourier analysis on motes • Control algorithm on DSP • Synchronization of base functions • Computational limits A(z) error signals acoustic plant mote2 gateway control signals : synchronization messages : data (Fourier-coefficients) transmission messages
Summary and future plans • Utilization of WSN in closed loop signal processing systems • Importance of signal observation • Sampling • Synchronization • Distributed signal processing • Searching for possible ways of data reduction