1 / 20

V incent Josse L aurent Vernac A lberto Bramati M ichel Pinard E lisabeth Giacobino

Les Houches 2003. Continuous variable squeezing & entanglement. A urélien Dantan. V incent Josse L aurent Vernac A lberto Bramati M ichel Pinard E lisabeth Giacobino. Laboratoire Kastler-Brossel ENS, Paris. Introduction : quantum noise. Monomode field. Fresnel d iagram.

Download Presentation

V incent Josse L aurent Vernac A lberto Bramati M ichel Pinard E lisabeth Giacobino

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Les Houches 2003 Continuous variable squeezing & entanglement Aurélien Dantan Vincent Josse Laurent Vernac Alberto Bramati Michel Pinard Elisabeth Giacobino Laboratoire Kastler-Brossel ENS, Paris

  2. Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q

  3. Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise  Heisenberg inequality  Phase/Photon number inequality

  4. Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise Coherent state Standard Quantum Limit = Vacuum fluctuations= « shot noise »  Heisenberg inequality  Phase/Photon number inequality

  5. Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise Squeezedstate  Heisenberg inequality Interest : Measurement sensitivity Quantum information  Phase/Photon number inequality

  6. Homodyne detection • Spectral noise density Analysis frequency: 1-15 MHz  Heisenberg inequality • Squeezed state generation c(2) -non linearity : parametric amplification (OPO, OPA) c(3) -non linearity : four wave mixing, Kerr effect (fibers, atoms) Introduction : quantum noise

  7. Polarization ellipsoid Stokes parameters Poincaré sphere Bowen etal. PRL 2002 Polarization (classical) Definition

  8. Quantum Stokes operators Polarization noise  Heisenberg inequalities Korolkova et al. PRA2002 Coherent polarization state x, y coherent states  Bowen et al. PRL 2002 Polarization (quantum)

  9. x-polarized beam : Stokes vector // S1 Heisenberg inequalities • Stokes vector fluctuations mean field amplitude length intensity azimuth amplitude orientation vacuum mode ellipticity phase Polarization squeezing: ?

  10. x-polarized beam : Stokes vector // S1 Heisenberg inequalities • Polarization squeezing ? xmodeamplitude squeezed amplitude squeezed y mode or or phase squeezed Polarization squeezing  NO  YES

  11. x-polarized beam : Stokes vector // S1 Heisenberg inequalities Polarization squeezing S3-polarization squeezed state Vacuum squeezing Polarization squeezing

  12. Direct detection  no LO required Korolkova et al. PRA 2002 • Atom-field interaction mapping of a quantum polarization state of light onto an atomic ensemble atomic ensembles entanglement, quantum networks,... [see P. Zoller’s lecture #3] Julsgaard et al. Nature2001 Why ?

  13. How ? • Indirect method Bowen etal. PRL 2002 Heersink et al.PRA 2003 60%  squeezed states produced independently • Direct method Cross-Kerr effect in optical fibers 50% Boivin et al.Opt. Comm. 1996 Josse etal. PRL 2003 Ries etal. PRA 2003 Cross-Kerr effect in atoms 20%  orthogonal vacuum squeezing

  14. homodyne detection interference signal Polarization squeezing with cold atoms

  15. Experimental results 10% polarization squeezing(3MHz) Josse etal. PRL 2003

  16. Experimental results S3-polarization squeezed state Josse etal. PRL 2003

  17. Inseparability criterion Duan et al. PRL 2000 Simon PRL 2000 Continuous variable inseparability criterion a and b entangled (Gaussian states) EPR-type operators ?

  18. Entanglement = sum of squeezings Non separable beams 2 uncorrelated squeezed modes : Ax and Ay, but for orthogonal quadratures  the 45° modesare the maximally entangled modes

  19. Inseparability criterion measurement Josse et al. quant-ph/0306152 Direct measurement  2 homodyne detections

  20. Conclusion • Applications: • measurementsensitivity • long distance quantum communication [see P. Zoller’s lecture], • quantum memory, quantum repeater... • teleportation with atomic ensembles [Polzik’s experiments 2001] • entanglement swapping [Glöckl et al. 2003]

More Related