200 likes | 310 Views
Les Houches 2003. Continuous variable squeezing & entanglement. A urélien Dantan. V incent Josse L aurent Vernac A lberto Bramati M ichel Pinard E lisabeth Giacobino. Laboratoire Kastler-Brossel ENS, Paris. Introduction : quantum noise. Monomode field. Fresnel d iagram.
E N D
Les Houches 2003 Continuous variable squeezing & entanglement Aurélien Dantan Vincent Josse Laurent Vernac Alberto Bramati Michel Pinard Elisabeth Giacobino Laboratoire Kastler-Brossel ENS, Paris
Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q
Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise Heisenberg inequality Phase/Photon number inequality
Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise Coherent state Standard Quantum Limit = Vacuum fluctuations= « shot noise » Heisenberg inequality Phase/Photon number inequality
Introduction : quantum noise Monomode field Fresnel diagram X, Y : quadrature operators “amplitude” “phase” : quadrature q Quantum noise Squeezedstate Heisenberg inequality Interest : Measurement sensitivity Quantum information Phase/Photon number inequality
Homodyne detection • Spectral noise density Analysis frequency: 1-15 MHz Heisenberg inequality • Squeezed state generation c(2) -non linearity : parametric amplification (OPO, OPA) c(3) -non linearity : four wave mixing, Kerr effect (fibers, atoms) Introduction : quantum noise
Polarization ellipsoid Stokes parameters Poincaré sphere Bowen etal. PRL 2002 Polarization (classical) Definition
Quantum Stokes operators Polarization noise Heisenberg inequalities Korolkova et al. PRA2002 Coherent polarization state x, y coherent states Bowen et al. PRL 2002 Polarization (quantum)
x-polarized beam : Stokes vector // S1 Heisenberg inequalities • Stokes vector fluctuations mean field amplitude length intensity azimuth amplitude orientation vacuum mode ellipticity phase Polarization squeezing: ?
x-polarized beam : Stokes vector // S1 Heisenberg inequalities • Polarization squeezing ? xmodeamplitude squeezed amplitude squeezed y mode or or phase squeezed Polarization squeezing NO YES
x-polarized beam : Stokes vector // S1 Heisenberg inequalities Polarization squeezing S3-polarization squeezed state Vacuum squeezing Polarization squeezing
Direct detection no LO required Korolkova et al. PRA 2002 • Atom-field interaction mapping of a quantum polarization state of light onto an atomic ensemble atomic ensembles entanglement, quantum networks,... [see P. Zoller’s lecture #3] Julsgaard et al. Nature2001 Why ?
How ? • Indirect method Bowen etal. PRL 2002 Heersink et al.PRA 2003 60% squeezed states produced independently • Direct method Cross-Kerr effect in optical fibers 50% Boivin et al.Opt. Comm. 1996 Josse etal. PRL 2003 Ries etal. PRA 2003 Cross-Kerr effect in atoms 20% orthogonal vacuum squeezing
homodyne detection interference signal Polarization squeezing with cold atoms
Experimental results 10% polarization squeezing(3MHz) Josse etal. PRL 2003
Experimental results S3-polarization squeezed state Josse etal. PRL 2003
Inseparability criterion Duan et al. PRL 2000 Simon PRL 2000 Continuous variable inseparability criterion a and b entangled (Gaussian states) EPR-type operators ?
Entanglement = sum of squeezings Non separable beams 2 uncorrelated squeezed modes : Ax and Ay, but for orthogonal quadratures the 45° modesare the maximally entangled modes
Inseparability criterion measurement Josse et al. quant-ph/0306152 Direct measurement 2 homodyne detections
Conclusion • Applications: • measurementsensitivity • long distance quantum communication [see P. Zoller’s lecture], • quantum memory, quantum repeater... • teleportation with atomic ensembles [Polzik’s experiments 2001] • entanglement swapping [Glöckl et al. 2003]