1 / 17

Arithmetic Sequences & Series

Arithmetic Sequences & Series. Pre-Calculus Section. It is an “ Arithmetic Sequence ” when the same number is added to get from one term to the next. The number being added is called the common difference (d) . To find the common difference, subtract any two consecutive terms.

ursula
Download Presentation

Arithmetic Sequences & Series

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Arithmetic Sequences & Series Pre-Calculus Section

  2. It is an “Arithmetic Sequence” when the same number is added to get from one term to the next. The number being added is called the commondifference (d). To find the common difference, subtract any two consecutive terms. To find d: ( a2 - a1), or (a3 - a2), or (a4 - a3), etc. 1. 18, 12, 6, 0, - 6,… d = __ - 6 2. - 13, - 6, 1, 8, … d = __ 7

  3. Decide if each series is an arithmetic series.If so, find the common difference. 1) Yes, difference = 4. No common difference. 2) No common difference. 3) Yes, difference = -4. 4)

  4. If the 1st term of an arithmetic sequence is 10,& the common difference is 3, find the next 4 terms. a1 = 10 a2 = _____ = __ 10 + d 13 13 + d 16 a3 = ______ = __ a4 = __ 19 a5 = __ 22 13, 16, 19, 22 If the first term of an arithmetic sequence is 6, & the common difference is -2, find the first 4 terms. 4 0 a1 = __, a2 = __, a3 = __, a4 = __ 6 2 6, 4, 2, 0

  5. an= a1 + (n - 1)d a41 = ____ d = __ a1 = __ n = __ Formula to find aspecific term: an = the term to be found Memorize This Formula! a1 = 1st term n = number of terms d = common difference Given the sequence: 8, 5, 2, - 1, …, find the 41st term. 8 41 - 3 - 112 a41 =_________ 8 + 40 (- 3)

  6. an= a1 + (n - 1)d an= a1 + (n - 1)d Find the 15th term of the sequence: 6, 3, 0, … a1 = __; d = __; n = __ - 3 15 6 a15 = _________ = ____ - 36 6 + 14(- 3) In an arithmetic sequence, a1 = 2; d = 3; find a10 a1 = __; d = __; n = __ 2 3 10 a10 = _______ = ___ 2 + 9(3) 29

  7. an= a1 + (n - 1)d

  8. 1) 2)

  9. an= a1 + (n - 1)d Need to know the 1st term. Find it first!

  10. an= a1 + (n - 1)d

  11. an= a1 + (n - 1)d

  12. Sum of a Finite Arithmetic Sequence To use this formula, you must know the first and the last term. Alternate Formula To use this formula, you must know the first term and the common difference.

  13. n = 20 a1 = 12 d = 6

  14. an= a1 + (n - 1)d Find the 50th term.

  15. an= a1 + (n - 1)d We don’t know how many terms are being added! First find what term 38 is. 38 = 3 + (n – 1)5 38 = 3 + 5n – 5 38 = 5n – 2 40 = 5n 8 = n It’s the 8th term!

  16. an= a1 + (n - 1)d Formulas to Memorize! Write the formula at the beginning of each problem. You will have it memorized by the time you finish the homework.

  17. Homework Page

More Related