1 / 64

Cytoskeleton - Locomotion

Cytoskeleton - Locomotion. Kohidai, Laszlo MD, PhD Med. habil., Assoc. Professor Dept. Genetics, Cell & Immunobiology, Semmelweis University. 2008. Main functions of cytoskeleton. Determines the shape of the cell Anchores organelles Movement of organelles Tensile strength

uyen
Download Presentation

Cytoskeleton - Locomotion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cytoskeleton - Locomotion Kohidai, Laszlo MD, PhD Med. habil., Assoc. Professor Dept. Genetics, Cell & Immunobiology, Semmelweis University 2008

  2. Main functions of cytoskeleton • Determines the shape of the cell • Anchores organelles • Movement of organelles • Tensile strength • Movement of chromosomes • Polarity • Motility

  3. Cytoskeleton • Microfilaments (actin) • Microtubuli (tubulin) • Intermedier filaments • Microtubule associated proteins (MAP-s) • Motor proteins

  4. Microfilaments Microtubuli Intermedier filaments

  5. SLIDING Globular proteins Ca2+ ATP Motor proteins Fibrillar proteins

  6. Microfilaments

  7. Polymerization of actin + ATP ADP Depolymerization - cytochalasin – inh. phalloidin - stabilizer ATP ADP Pi Polymerization - slow

  8. Actin - still in Prokaryots ! ((Ent et al. Nature 2001,413, 39)

  9. Moving cytoplasm Stationary (cortical) cytoplasm Plasma membrane Actin filaments Cell-wall Chloroplasts Cyclosis • Transitional connections between actin and myosin • Ca2+, temperature- and pH-dependent (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

  10. „Fountain” mechanism Ca2+-dep. requires ATP Mono- Poly- Lobo- podial Filo- Reticulo- Formation of pseudopodium stress-fibrillums integrins

  11. Cross-linking proteins of actin contractile bundle a actinin – in stress fibr. gel-like network filamin - cortex „tight” parallel bundle fimbrin – in filopodium

  12. Migrating keratinocyte 15 mm/sec Formation of lobopodium microtubuli actin-network

  13. - + Regulator proteins of actin polymerisation gCAP39 Severin Gelsolin Villin CapZ Tropomodulin  Cofilin Severin Gelsolin

  14. Actin polymerisation – acrosomal-reaction (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

  15. local actin polymerization • speed: 10 mm/min • high ability to transmit • in tissues Listeria monocytogenes actin (Fred Soo & Julie TheriotLaboratory)

  16. Model of actin nucleation WASP = Wiscott-Aldrich syndr. prot.

  17. Structure of cortical region (Svitkina, TM, Borisy GG J. Cell Biol. 1999, 145, 1009)

  18. Myozin I. Arp2/3 Profilin - G-aktin Filamin Integrin Actin – membrane links membrane F-Actin

  19. Profilin-mechanism Tb4 =timozin b4 Proline-rich protein (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

  20. Filamin – Membrane link filamin actin

  21. Structure of focal contact actin filament a actinin vinculin + paxillin talin integrin fibronectin

  22. Thrombocyte Glycophorin Ankyrin Spectrin tetramer Muscle Epithel A plasma membrane – cortex links ((Lux SE, 1979 Nature 281:426)

  23. E Electromagnetic field induces the transformation of cytoskeleton and formation of pseudopodia Adhesion plaque + + + - -

  24. ATP - ADP Pi Myosin head Ca2+-dependent phosphorylation and its effect on the 3D strcture light chain heavy chain a helix myosin I. 150 kD monomer myosin I I. 260 kD Head: - ATP-ase - motor dimer

  25. Distribution of myosines in the migrating Dyctiosteliumand in dividing cell myozin I. (green) myozin II. (red) (Fukui, Y. Mol. Cell Biol 2000, 785))

  26. + - Main types of interactions between the globular and fibrillar components of cytoskeleton membrane

  27. MT-blocked F-actin blocked Non-treated

  28. Microtubules

  29. Tubulin – still in Prokaryotes ! FtsZ Tubulin (Margolin Laboratory, University of Texas)

  30. Polymerization of tubulin GTP Polymerization - fast GTP GTP GTP Protofilamentum (strait) GDP GDP GDP GDP Protofilamentum (curved) Depolymerization

  31. Nucleation Elongation Dynamics of microtubule-assembly - + incorporation balanced release

  32. Role of g-tubulin in nucleation (Wiease et al. Curr.Opin.Struct.Biol. 1999, 9, 250)

  33. Interphase cell centrosome Cilla Basal body Dividing cell spindle Neuron centrosome axon Microtubular systems in the cells -Centrosome - Cilia / flagellum - Mitotic system - Vesicular transport

  34. specialized region of the cortex MTOC = Mikrotubul organizing center g-tubulin ((Brinkley, B.R. Encyclop. Neurosci. 1987, 665)

  35. 24 nm abdimer Protofilaments atubulin btubulin Network of microtubuli Fibroblast

  36. Cilia cilia flagellum Paramecium

  37. tubulin (13 ill. 11 protofilaments) A B dynein-arms nexin

  38. The arm moves toward the - pole Composition of dynein-arms ATP-independent binding ATP-dependent hydrolisis

  39. The role of dynein arms in beating of cilia Bending „Telescoping” Proteolysis

  40. Molecules composing the cilia more than 250 types of molecules • 70% a and b tubulin • dynein arms • outer - 9 polypeptides - ATP-ase • inner – composition varies • radial spokes - 17 polypeptides

  41. Microtubules of mitotic spindle and kinetochore

  42. Arrangement of actin during cell-division

  43. Intermedier filaments

  44. intermedier filament i.e. vimentin microtubule = rupture actin filament Mechanical characterization of cytoskeleton components deformation force

  45. Role of intermedier filaments Buffer against external mechanical stress Tissue specificity Nucleus – lamines (lamina fibrosa) Epithel – keratin Connective tissue Muscles Neuroglia Neurones - neurofilaments }vimentin

  46. Structure of intermedier filamentums (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

  47. Domain structures of intermedier filamentums H2N- a helical domain -COOH keratins vimentin neurofilam. prot. nuclear prot

  48. Intermedier filaments Keratin filaments Vimentin-like filaments ! They DO NOT co-polymerise !

  49. Microvilli myosin I. actin villin „terminal web” • a rigidbundle composed by20-30 actin mol.s • actin + on the apical part • villin is the linker molecule of actins • „terminal web” = intermed.fil. + spectrin • myosin I. and calmodulin anchore to the surface membrane

  50. SEM structure of microvilli actin bundle linker molecules „terminal web”

More Related