1 / 39

大学 activity: 粒子識別

大学 activity: 粒子識別. 森 隆志 ( 名古屋大学 ) 関西中部地方 B 中間子の物理実験研究会 @ 奈良女子大学 2009 年 11 月 5 日. Contents. Introduction R&D of TOP counter components Performance test of prototype R&D of HAPD for A-RICH counter Summary. 1. INTRODUCTION. 1 . Our Motivation. Upgrade of Belle PID system

uzuri
Download Presentation

大学 activity: 粒子識別

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 大学activity: 粒子識別 森 隆志 (名古屋大学) 関西中部地方 B中間子の物理実験研究会@奈良女子大学 2009年11月5日

  2. Contents Introduction R&D of TOP counter components Performance test of prototype R&D of HAPD for A-RICH counter Summary 関西中部地方B中間子の物理研究会@奈良女子大学

  3. 1. INTRODUCTION 関西中部地方B中間子の物理研究会@奈良女子大学

  4. 1. Our Motivation • Upgrade of Belle PID system • Current PID system of Belle • π/K – separation power : 3σ • Barrel: TOF + ACC • End cap: ACC Current system • Target Performance • 3σ ⇒ 4σ (0.6 < p < 4 GeV/c) (ACC: Threshold type Aerogel Cherenkov Counter) 1.5T 1.2m Upgrade e- 8.0GeV 2.6m e+ 3.5GeV Install here Belle-II • Barrel: TOP counter • End cap: Aerogel RICH 名古屋大学が中心になって 行っている研究について紹介する Backward Forward 関西中部地方B中間子の物理研究会@奈良女子大学

  5. 2. Principle of TOP counter (1) Imaging with quartz For same momentum, velocity β of π/K is different different ring images Require large screen DIRC(Detection of Internally Reflected Cherenkov light) technique • Cherenkov radiator + screen (photo-detector matrix) • Cherenkov light propagate to terminal of quartz with total reflection • Ring image is detect as parabola 関西中部地方B中間子の物理研究会@奈良女子大学

  6. 2. Principle of TOP counter (2) • TOP(Time Of Propagation) counter • Cherenkov radiator + time sensitive screen • Position (x, y) ⇒ Position + time (x, t) • Very compact & simple TOP TOF 1.18m y TOP counter measures TOF + RICH z x High performance expected! time includes TOF information 関西中部地方B中間子の物理研究会@奈良女子大学

  7. 3. Expected Performance in Belle-II Expected performance cosθ Forward Backward cosθ π/K separation power 4σfor 2<p<4 関西中部地方B中間子の物理研究会@奈良女子大学

  8. 4. Typical Ring image & Key Parameters y Top view ~1000mm z 400mm x π/K t x Detection position & time ~100ps Typical ring image • Key points • Accuracy of quartz radiator ( = lightguide) • Cherenkov light should propagate without distortion and attenuation • Time resolution and sensitivity of photo-detector • To obtain clear ring image • Important parameters : Ndet, 関西中部地方B中間子の物理研究会@奈良女子大学

  9. 5. Requirements to Components Quartz radiator • Propagate Cherenkov light without distortion • Flatness : < 100μm • Right angle accuracy : ~10” • Total reflection for suppression of attenuation • Surface roughness : 5Å Photo-detector • Single photon detection • Gain : ~1.0 ×106 • Important factor of time resolution of TOP counter • TTS : σphotodetector < 40ps • Number of detected photon : ~20 • QE : 20%@λ=400nm • Usable in magnetic field of 1.5T for Belle-II 関西中部地方B中間子の物理研究会@奈良女子大学

  10. 2. R&D OF TOP COUNTER COMPONENTS 関西中部地方B中間子の物理研究会@奈良女子大学

  11. 1. Surface Test of Quartz single photon mirror collimator MCP-PMT prism single photon TTS for each incidence point prism line ① line ② line ③ TTS[ps] MCP-PMT quartz ・407nm pulse laser ・Single photon irradiation ・47.2°incidence propagation length[mm] no degradation of TTS ⇒ sufficiently small roughness 関西中部地方B中間子の物理研究会@奈良女子大学

  12. Channel ~10m ~400m 2. Photo-detector Square type MCP-PMT Co-development with Hamamatsu Photonics Only photo-detector satisfies requirements MCP-PMT (Micro Channel Plate) Channel φ~10μm, Bias angle of MCP : 13° Usable in B-field Requirements • Gain : 1.0×106 • TTS : <40ps • QE : >20%@λ=400nm • Usable in B -field 関西中部地方B中間子の物理研究会@奈良女子大学

  13. 3. MCP-PMT R&D Pedestal Output of single photon Gain ~ 1.0×106 Single photon detection OK Output charge distribution 関西中部地方B中間子の物理研究会@奈良女子大学

  14. 4. MCP-PMT R&D Single photon irradiation 検出時間分布 counts QE[%] σ=34.2±0.4ps QE:24%@400nm transit time [25ps] wavelength [nm] TTS<40ps OK QE>20%@λ=400nm OK 関西中部地方B中間子の物理研究会@奈良女子大学

  15. 3. PERFORMANCE TEST OF PROTOTYPE 関西中部地方B中間子の物理研究会@奈良女子大学

  16. 1. Beam Test Performed in Jun. & Dec. 2008 Items to confirm • Detection of ring image • Obtain N(), number of detected photons par track • TTSmeasurement Setup of beam test at Fuji test beam line Vetocounter TOP Counter MWPC2 MWPC1 electron beam (2GeV/c) Trigger Counter Timing Counter Beam trajectory MCP-PMT t0 determination Subtract em-shower events 関西中部地方B中間子の物理研究会@奈良女子大学

  17. 2. Result : ring image ④ Ring image (data) Ring image (simulation) ③ ② ① transit time[25ps] transit time[25ps] ch ch Proper action of total system of TOP counter is confirmed 関西中部地方B中間子の物理研究会@奈良女子大学

  18. 3. Result : number of detected photons arbitrary Number of detected photons/events N(γ) consistency confirmed Slightly different ⇒ remaining shower event 関西中部地方B中間子の物理研究会@奈良女子大学

  19. 4. Result : transit time distribution data simulation 1st 3rd 3rd 1st 2nd 2nd カウント数 [photons] ch29 transit time[25ps] transit time[25ps] quartz Beamirradiation point (875mm) 915mm 3rd 2nd 1st 875mm We confirmed consistencyof transit time distributionsfor beam test & simulation 関西中部地方B中間子の物理研究会@奈良女子大学

  20. 1.5T 1.2m e- 8.0GeV 2.6m e+ 3.5GeV Aerogel RICH 4. R&D OF HAPD FOR A-RICH Backward Forward 関西中部地方B中間子の物理研究会@奈良女子大学

  21. 1. Aerogel RICH counter 関西中部地方B中間子の物理研究会@奈良女子大学

  22. 2. HAPD R&D • Hybrid structure • Vacuum tube • APD (5x5mm2 matrix) • Bialkali photocathode • ~104 total gain • Confirmed • Single photon detection • Available in 1.5T B-field • Current issue • Radiation hardness (neutron) study • Photocathode study 73mm 73mm Photo-detection in Magnetic field Single photon irradiation 関西中部地方B中間子の物理研究会@奈良女子大学

  23. 5. Summary & Issues Our Motivation: upgrade of PID system • Target performance: separation power 3σ⇒4σ Idea: barrel ⇒ TOP, end cap ⇒ Aerogel RICH TOP counter • New idea of RICH: Position(x, y) Position(x) + time(=TOF+RICH) • Basic performances are confirmed with prototype • Issue • Structure, reconstruction code, lifetime of PMT, readout, etc… HAPD R&D • Performances are available for ARICH • Issue • Neutron hardness, high QE photocathode study 関西中部地方B中間子の物理研究会@奈良女子大学

  24. BACKUP 関西中部地方B中間子の物理研究会@奈良女子大学

  25. Belle-II experiment Belle detector e+e- asymmetric collider e+ : 3.5GeV e- : 8.0GeV e+e-→ Υ(4S) → BB π/K-ID is important for flavor tagging Higher statistics: Higher luminosity ×~40 B-factory ⇒Super B-factory & Higher accuracy : Belledetector upgrade Our target of development : Belle-II experiment 関西中部地方B中間子の物理研究会@奈良女子大学

  26. History of R&D Butterfly TOP 関西中部地方B中間子の物理研究会@奈良女子大学

  27. Performance Parameterization Separation power : timing 1m 1m : Difference of TOF +TOPfor π/K(~ 60ps) : Detected photons/track(~20) assumption : TTS of TOP counter : TTS of photo-detector(~40ps) :Chromatic dispersion (1mpropagation in quartz: ~50ps ⇒25ps) Can suppress with λ cut filter Important parameters : Ndet, σphotodetector 関西中部地方B中間子の物理研究会@奈良女子大学

  28. Chromatic Dispersion Typical wavelength distribution of group velocity of light Typical wavelength distribution of detected photons group velocity of light [m/ns] number of detected photons wavelength [nm] wavelength [nm] Restricts TOP TTS This is because refraction index has wavelength dependence Chromatic dispersion 関西中部地方B中間子の物理研究会@奈良女子大学

  29. Suppression of Chromatic Dispersion 350nm Suppression of chromatic dispersion with 350nm wavelength cut filter Group velocity of light σchromatic 50 25ps Number of Cherenkov photons wavelength cut ⇒ TTS improve Transmittance of wavelength cut filter ⇒ fine tune Ndet decrease Wavelength cut 関西中部地方B中間子の物理研究会@奈良女子大学

  30. 1. Radiator Quartz (fused silica) • Size : 915×400×20 (mm3)‏ • Weight :16kg • Flatness : < 1.2μm/m • Surface roughness :5Å • Refractive index :1.45 Co-developmentwith Okamotokougaku 関西中部地方B中間子の物理研究会@奈良女子大学

  31. Readout-box PMT Construction of Prototype PMT array with λ cut filter Schematic side view of PMT array Spring loaded polyathetal head plunger×40/surface Distortion of frame is absorbed by spring Al honeycomb 46 mm Quartz 23mm Joint of 2 parts Optical contact : silicon oil + pressure Al honeycomb Cross section of radiator part • Al honeycomb support • Core density:0.037g/cm3 • Thickness : 10mm • Surface plate : 0.3mm Al • Sag :δ < 80μm • Quartz flatness in Frame • <100μm/m (Measured) 関西中部地方B中間子の物理研究会@奈良女子大学

  32. AMP+CFD amp comparator to TDC to ADC input low voltage supply PMT module • HV divider + AMP + Discriminator • Small size (28mmW) • Prototype • Fast AMP (MMIC, 1GHz, x20) • Fast comparator (180ps propagation) • CFD with pattern delay • Performance • Test pulse • ~5ps resolution • MCP-PMT • s<40ps • Working well 関西中部地方B中間子の物理研究会@奈良女子大学

  33. 2. Performance Confirmation by Beam Test Items to confirm • Detection of the ring image of the Cherenkov light • Obtain N(), the number of detected photons par track • Measure the TTS MC simulation Ring image • Number of detected photons • Ndet = 16 • TTS for 1st surface of ring image • = 78 [ps] transit time[25ps] ch • Demonstration of the TOP counterwith MCP-PMT array 関西中部地方B中間子の物理研究会@奈良女子大学

  34. Set up for Beam Test Quartz + MCP-PMT Fuji test beam line at KEK TOP Counter MWPC② y y electron beam (2GeV/c) Trigger Counter Timing Counter x x MWPC① Beam trajectory Vetocounter MCP-PMT t0 determination Subtract em-shower events 関西中部地方B中間子の物理研究会@奈良女子大学

  35. TTS of timing counter counts σ=13.4±0.7ps transit time[25ps] 関西中部地方B中間子の物理研究会@奈良女子大学

  36. 伝播距離によって時間分解能はどれだけ悪化するか?伝播距離によって時間分解能はどれだけ悪化するか? 波長分散効果を考慮した理解は正しいのか? シミュレーション 時間分解能[ps] 伝播距離 [mm] 各伝播距離における測定結果が シミュレーションを再現 波長分散効果が予想通り のものであることを確認 関西中部地方B中間子の物理研究会@奈良女子大学

  37. 関西中部地方B中間子の物理研究会@奈良女子大学関西中部地方B中間子の物理研究会@奈良女子大学

  38. Summary for TOP Counter TOP counter is very compact & simple detector based on TOF + RICH technique • Radiator propagates Cherenkov light without distortion • Position(x, y) Position(x) + time (= TOF + TOP) Target performance of TOP counter • >4σfor 0.6 < p < 4GeV/c • Key parameters • Number of detected photons Prototype of TOP counter has been constructed • We confirmedbasic performancesof prototype withfollowing parameters: 関西中部地方B中間子の物理研究会@奈良女子大学

  39. 関西中部地方B中間子の物理研究会@奈良女子大学関西中部地方B中間子の物理研究会@奈良女子大学

More Related