340 likes | 417 Views
4.1 (cont.) Probability Models. The Equally Likely Approach (also called the Classical Approach). Assigning Probabilities. If an experiment has N outcomes, then each outcome has probability 1/N of occurring If an event A 1 has n 1 outcomes, then P(A 1 ) = n 1 /N. Dice
E N D
4.1 (cont.) Probability Models The Equally Likely Approach (also called the Classical Approach)
Assigning Probabilities • If an experiment has N outcomes, then each outcome has probability 1/N of occurring • If an event A1 has n1 outcomes, then P(A1) = n1/N
Dice You toss two dice. What is the probability of the outcomes summing to 5? This isS: {(1,1), (1,2), (1,3), ……etc.} There are 36 possible outcomes in S, all equally likely (given fair dice). Thus, the probability of any one of them is 1/36. P(the roll of two dice sums to 5) = P(1,4) + P(2,3) + P(3,2) + P(4,1) = 4 / 36 = 0.111
Product Rule for Ordered Pairs • A student wishes to commute to a junior college for 2 years and then commute to a state college for 2 years. Within commuting distance there are 4 junior colleges and 3 state colleges. How many junior college-state college pairs are available to her?
Product Rule for Ordered Pairs • junior colleges: 1, 2, 3, 4 • state colleges a, b, c • possible pairs: (1, a) (1, b) (1, c) (2, a) (2, b) (2, c) (3, a) (3, b) (3, c) (4, a) (4, b) (4, c)
Product Rule for Ordered Pairs • junior colleges: 1, 2, 3, 4 • state colleges a, b, c • possible pairs: (1, a) (1, b) (1, c) (2, a) (2, b) (2, c) (3, a) (3, b) (3, c) (4, a) (4, b) (4, c) 4 junior colleges 3 state colleges total number of possible pairs = 4 x 3 = 12
Product Rule for Ordered Pairs • junior colleges: 1, 2, 3, 4 • state colleges a, b, c • possible pairs: (1, a) (1, b) (1, c) (2, a) (2, b) (2, c) (3, a) (3, b) (3, c) (4, a) (4, b) (4, c) In general, if there are n1 ways to choose the first element of the pair, and n2 ways to choose the second element, then the number of possible pairs is n1n2. Here n1 = 4, n2 = 3.
Counting in “Either-Or” Situations • NCAA Basketball Tournament, 68 teams: how many ways can the “bracket” be filled out? • How many games? • 2 choices for each game • Number of ways to fill out the bracket: 267 = 1.5 × 1020 • Earth pop. about 6 billion; everyone fills out 100 million different brackets • Chances of getting all games correct is about 1 in 1,000
A state’s automobile license plate begins with a number from 1 to 26, corresponding to the 26 counties in a state. This number is followed by a 5-digit number. How many different license plates can the state issue? • 1,300 • 6,552 • 2,600,000 • 786,240 • 26,000 10 Countdown
Counting Example • Pollsters minimize lead-in effect by rearranging the order of the questions on a survey • If Gallup has a 5-question survey, how many different versions of the survey are required if all possible arrangements of the questions are included?
Solution • There are 5 possible choices for the first question, 4 remaining questions for the second question, 3 choices for the third question, 2 choices for the fourth question, and 1 choice for the fifth question. • The number of possible arrangements is therefore 5 4 3 2 1 = 120
Efficient Methods for Counting Outcomes • Factorial Notation: n!=12 … n • Examples 1!=1; 2!=12=2; 3!= 123=6; 4!=24; 5!=120; • Special definition: 0!=1
Factorials with calculators and Excel • Calculator: non-graphing: x ! (second function) graphing: bottom p. 9 T I Calculator Commands (math button) • Excel: Insert function: Math and Trig category, FACT function
Factorial Examples • 20! = 2.43 x 1018 • 1,000,000 seconds? • About 11.5 days • 1,000,000,000 seconds? • About 31 years • 31 years = 109 seconds • 1018 = 109 x 109 • 20! is roughly the age of the universe in seconds
Permutations A B C D E • How many ways can we choose 2 letters from the above 5, without replacement, when the order in which we choose the letters is important? • 5 4 = 20
Permutations with calculator and Excel • Calculator non-graphing: nPr • Graphing p. 9 of T I Calculator Commands (math button) • Excel Insert function: Statistical, Permut
Combinations A B C D E • How many ways can we choose 2 letters from the above 5, without replacement, when the order in which we choose the letters is not important? • 5 4 = 20 when order important • Divide by 2: (5 4)/2 = 10 ways
BUS/ST 350 Powerball Lottery From the numbers 1 through 20, choose 6 different numbers. Write them on a piece of paper.
North Carolina Powerball Lottery Prior to Jan. 1, 2009 After Jan. 1, 2009
The Forrest Gump Visualization of Your Lottery Chances • How large is 195,249,054? • $1 bill and $100 bill both 6” in length • 10,560 bills = 1 mile • Let’s start with 195,249,053 $1 bills and one $100 bill … • … and take a long walk, putting down bills end-to-end as we go
Raleigh to Ft. Lauderdale… … still plenty of bills remaining, so continue from …
… Ft. Lauderdale to San Diego … still plenty of bills remaining, so continue from…
… San Diego to Seattle … still plenty of bills remaining, so continue from …
… Seattle to New York … still plenty of bills remaining, so continue from …
… New York back to Raleigh … still plenty of bills remaining, so …
Go around again! Lay a second path of bills Still have ~ 5,000 bills left!!
Chances of Winning NC Powerball Lottery? • Remember: one of the bills you put down is a $100 bill; all others are $1 bills. • Put on a blindfold and begin walking along the trail of bills. • Your chance of winning the lottery: the chance of selecting the $100 bill if you stop at a random location along the trail and pick up a bill .
More Changes After Jan. 1, 2009 After Jan. 1, 2012 http://www.nc-educationlottery.org/powerball_how-to-play.aspx