1 / 15

Radioactivity and you! ….and through you! …..and all around you!

Radioactivity and you! ….and through you! …..and all around you!. Radiation. Radiation : The process of emitting energy in the form of waves or particles. Where does radiation come from?

Download Presentation

Radioactivity and you! ….and through you! …..and all around you!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radioactivityand you! ….and through you!…..and all around you!

  2. Radiation Radiation: The process of emitting energy in the form of waves or particles. Where does radiation come from? Radiation is generally produced when particles interact or decay.A large contribution of the radiationon earth is from the sun (solar) or from radioactive isotopes of the elements (terrestrial). Radiation is going through you atthis very moment! http://www.atral.com/U238.html

  3. Isotopes What’s an isotope? Two or more varieties of an element having the same number of protons but different number of neutrons. Certain isotopes are “unstable” and decay to lighter isotopes or elements.Deuterium and tritium are isotopes of hydrogen. In addition to the 1 proton, they have 1 and 2 additional neutrons in the nucleus respectively*. Another prime example is Uranium 238, or just 238U.

  4. Radioactivity • By the end of the 1800s, it was known that certain isotopes emit penetrating rays. Three types of radiation were known: • Alpha particles (a) • Beta particles (b) • Gamma-rays (g)

  5. Where do these particles come from ? • These particles generally come from the nuclei of atomic isotopeswhich are not stable. • The decay chain of Uranium produces all three of these formsof radiation. • Let’s look at them in more detail…

  6. Note: This is theatomic weight, whichis the number ofprotons plus neutrons Alpha Particles (a) Radium R226 Radon Rn222 p + n n p a (4He) 88 protons 138 neutrons 86 protons 136 neutrons 2 protons 2 neutrons The alpha-particle(a) is a Helium nucleus. It’s the same as the element Helium, with the electrons stripped off !

  7. Beta Particles (b) Carbon C14 Nitrogen N14 + e- electron (beta-particle) 6 protons 8 neutrons 7 protons 7 neutrons We see that one of the neutrons from the C14 nucleus “converted” into a proton, and an electron was ejected. The remaining nucleus contains 7p and 7n, which is a nitrogennucleus. In symbolic notation, the following process occurred: n  p + e ( + n ) This is neutrino - beyond the scope of geology – but cool.

  8. Gamma particles (g) In much the same way that electrons in atoms can be in an excited state, so can a nucleus. Neon Ne20 Neon Ne20 + 10 protons 10 neutrons(in excited state) 10 protons 10 neutrons(lowest energy state) gamma A gamma is a high energy light particle. It is NOT visible by your naked eye because it is not in the visible part of the EM spectrum.

  9. Gamma Rays Neon Ne20 Neon Ne20 + The gamma from nuclear decayis in the X-ray/ Gamma ray part of the EM spectrum(very energetic!)

  10. How do these particles differ ? * m = E / c2

  11. Rate of Decay • Beyond knowing the types of particles which are emittedwhen an isotope decays, we also are interested in how frequentlyone of the atoms emits this radiation. • A very important point here is that we cannot predict when aparticular entity will decay. • We do know though, that if we had a large sample of a radioactive substance, some number will decay after a given amount of time. • Some radioactive substances have a very high “rate of decay”,while others have a very low decay rate. • To differentiate different radioactive substances, we look toquantify this idea of “decay rate”

  12. #atomsremaining % of atomsremaining Time Half-Life The “half-life” (h) is the time it takes for half the atoms of a radioactive substance to decay. The time it took for half your muffin to be consumed, remember? For example, suppose we had 20,000 atoms of a radioactive substance. If the half-life is 1 hour, how many atoms of that substance would be left after: 1 hour (one lifetime) ? 10,000 (50%) 2 hours (two lifetimes) ? 5,000 (25%) 3 hours (three lifetimes) ? 2,500 (12.5%)

  13. A radioactive decay curve:

  14. Half life • Not all particles have the same half life. The half life • is known and constant for some isotopes. • Uranium-238 has a lifetime of about 6 billion (6x109) years ! • Some subatomic particles have lifetimes that are less than 1x10-12 sec ! • Given a batch of unstable particles, we cannotsay which one will decay.

  15. Radioactivity and you.Questions?

More Related