550 likes | 909 Views
Magma, Rocks Classification & Textures. MAGMA. MAGMA. Larutan silikat yang sangat panas Mengandung oksida, sulfida serta volatiles (CO 2 , sulfur, chlorine, fluorin, boron dll) Temperatur antara 600°C (magma asam) sampai 1250°C (magma basa). JENIS KONVERGEN. 7. 3. 2. 5. 1. 4. 6.
E N D
MAGMA • Larutan silikat yang sangat panas • Mengandung oksida, sulfida serta volatiles (CO2, sulfur, chlorine, fluorin, boron dll) • Temperatur antara 600°C (magma asam) sampai 1250°C (magma basa)
7 3 2 5 1 4 6 200 km Continental Crust Oceanic Crust 400 Source of Melts Lithospheric Mantle ? ? ? ? Sub-lithospheric Mantle 600 km Plate Tectonic - Igneous Genesis
Stages in ascent • Eruption • (Fragmentation) • Vesiculation • Renewed ascent • Storage • mixing • assimilation • crystallization • Buoyant ascent • Partial melting
Crust Depth (km) The Earth’s Interior 60 Upper Mantle 220 410 Transition Zone 660 Mantle Crust: Granite/Andesite (felsic) Mantle: Peridotite (ultramafic) Core: Metal alloy/liquid Lower Mantle 2898 Outer Core (liquid) Core 5145 Inner Core (solid) 6370
Ca Al S Si 1.4% 3.0% 1.0% 14.4% O 50.7% Fe 15.2% Mg 15.3% Most important elements Figure 1-5. Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter , Prentice Hall.
Partial Melting: The Origin of Basalt and Granite Basaltic magma = 50% silica (1100o C) Forms the rock basalt Melting Asthenosphere 40% Silica
Partial Melting: The Origin of Basalt and Granite Granitic magma ~ 70% silica (700-900o C) Forms granite (a mixture of quartz and feldspar) Melting Continental Crust (Mainly low melting point minerals such as quartz, feldspar, mica)
Urutan pembekuan magma • Padapembekuan magma, padaawalnya mineral yang terbentukadalah yang anhydrous (tidakmengandung air) tidakmengandunggugus OH, disebut mineral pyrogenetik. • Cairanselanjutnyaakanlebihbanyakmengandungkomponen gas danterbentuk mineral-mineral yang mengandunggugusanhydroksil (OH), disebut mineral hydratogenetik.
Diferensiasi Magma • Prosesdiferensiasimeliputisemuakegiatan yang mengakibatkansuatujenis magma induk yang semularelatifhomogenterpecah-pecahmenjadibeberapabagianataufraksidengankomposisi yang berbeda-beda. Hal inidisebabkankarenamigrasi ion ataumolekuldalamlarutan magma karenaadanyaperubahantemperaturdantekanan. Yang padaakhirnyaakanmembentukberbagaijenisbatuanbekudengankomposisi yang berbeda-beda pula.
DIAGRAM FASE • Fase : padat, cair, gas • Diagram fase : menggambarkan kondisi magma pada kondisi P & T tertentu • Parameter penting dalam sistem magma : fase, komponen, variabel intensif
DIAGRAM fASE • fase : padat, cair • komponen : komponen terkecil yang diperlukan utk pembentukan fase-fase • dalam sistem (OH, H2O, MgO, NaAlSi3O8, dll) • variabel intensif : temperatur dan tekanan, jumlah komponen
DIAGRAM FASE • Rumus fase : F = C – P + 2 • F : degree of freedom : jumlah kondisi minimum • C : jumlah komponen; • P : jumlah fase • contoh utk air – es ------ C = 1 (H2O) ; P = 2 (es dan air) • F = C – P + 2 ---- F = 1 – 2 + 2 = 1 (unary system)
SISTEM 2 KOMPONEN (BINER) DGN TITIK EUTEKTIK h : titik eutektik; titik terendah fase cair ; kondisi terbentuknya 2 komponen
Why storage? Why do some magmas stall and pond in chambers during ascent? crust denser stronger crust
Processes during storage in magma chambers Fractional Crystallization http://www.geolsoc.org.uk/webdav/site/GSL/shared/images/geoscientist/Geoscientist%2019.2/7%20Volcano%20and%20magma%20chamber%20James%20Island2resized.jpg
Processes during storage in magma chambers Gravity settling http://www.geolsoc.org.uk/webdav/site/GSL/shared/images/geoscientist/Geoscientist%2019.2/7%20Volcano%20and%20magma%20chamber%20James%20Island2resized.jpg
Gravity settling and cumulates http://www.geol.lsu.edu/henry/Geology3041/lectures/12LayeredMafic/Fig12-15.jpg
Buoyancy, sinking: Stoke’s Law r - r 2 2gr ( ) = s l V = the settling velocity (cm/sec) g = the acceleration due to gravity (980 cm/sec2) r = the radius of a spherical particle (cm) rs = the density of the solid spherical particle (g/cm3) rl = the density of the liquid (g/cm3) h = the viscosity of the liquid (1 c/cm sec = 1 poise) V h 9
Sinking olivine in basalt Olivine in basalt • Olivine (rs = 3.3 g/cm3, r = 0.1 cm) • Basaltic liquid (rl = 2.65 g/cm3, h = 1000 poise) • V = 2·980·0.12 (3.3-2.65)/9·1000 = 0.0013 cm/sec • that’s ~1m per day
Sinking x’talin rhyolite Rhyolitic melt • h = 107 poise and rl = 2.3 g/cm3 • hornblende crystal (rs = 3.2 g/cm3, r = 0.1 cm) • V = 2 x 10-7 cm/sec, or 6 cm/year • feldspars (rl = 2.7 g/cm3) • V = 2 cm/year • = 200 m in the 104 years that a stock might cool • If 0.5 cm in radius (1 cm diameter) settle at 0.65 meters/year, or 6.5 km in 104 year cooling of stock
Classification of Igneous Rocks Figure 2-1a. Method #1 for plotting a point with the components: 70% X, 20% Y, and 10% Z on triangular diagrams. An Introduction to Igneous and Metamorphic Petrology, John Winter, Prentice Hall.
Olivine Dunite 90 Peridotites Wehrlite Lherzolite Harzburgite 40 Pyroxenites Olivine Websterite Orthopyroxenite 10 Websterite 10 Clinopyroxenite Orthopyroxene Clinopyroxene Classification of Igneous Rocks Figure 2-2. A classification of the phaneritic igneous rocks. b. Gabbroic rocks. c. Ultramafic rocks. After IUGS. (c)
Classification of Igneous Rocks Figure 2-4. A chemical classification of volcanics based on total alkalis vs. silica. After Le Bas et al. (1986) J. Petrol., 27, 745-750. Oxford University Press.
Classification of Igneous Rocks Ash (< 2 mm) Lapilli (2-64 mm) Lapilli- Tuff stone Lapilli Tuff 30 30 Lapilli - Tuff Breccia 70 70 Pyroclastic Breccia or Agglomerate Blocks and Bombs (> 64 mm) (b) Figure 2-5. Classification of the pyroclastic rocks. a.Based on type of material. After Pettijohn (1975) Sedimentary Rocks, Harper & Row, and Schmid (1981) Geology, 9, 40-43. b.Based on the size of the material. After Fisher (1966) Earth Sci. Rev., 1, 287-298.
a Fast growth Ocean Drilling Program