700 likes | 722 Views
Explore the intricate balance of electrolytes, fluid compartments, and hormonal controls in the body. Learn about key electrolyte functions, fluid shift mechanisms, and common clinical signs of imbalances. With a focus on sodium, potassium, calcium, and magnesium levels, delve into the causes, signs, and treatment of hypo- and hyper-electrolytemia. Gain insights into acid-base regulation and the role of chemical buffer systems in maintaining physiological pH levels.
E N D
Acid, Base, Electrolytes Balance and Alterations
Input = output Hormones Na+ / K+ Renin Aldosterone ANP Reproductive Hormones GCC Ca++ / Mg++ Calcitonin PTH H2O ADH Anions follows passively Cl- HCO3- PO4= Water and Electrolyte Balance
Water • Intake • Loss • Normal • Abnormal • Osmosis • Hormonal control • Capillary Dynamics • CHP • COP • IHP • IOP
Fluid Shift to third space • Edema • Effusion • Transudate • Low cell • Low protein • Exudate • Types: Nonseptic, Septic • Contents • High cell • High protein
Edema • Causes • Obstruction • Overload • Inflammation • hypoalbuminemia • Vessels • Angioedema • Lymphedema • Types • Localized • Pitting • Weeping • Dependent • Generalized
Terminology • Isotonic • Hypovolemia • Hypervolemia • Hypertonic • Hyperosmolar • Hypotonic • Hypo-osmolar
Hormones that regulate Electrolytes • Aldosterone • ANP • PTH • Cacitriol • Calcitonin
Cations • + charge • Location • Function • Hormonal Controls • Alterations • Hypo- • Hyper-
< 135 mEq/L Etiology Decreased Na+ (diet) Increased H20 Diuretics Hiridosis Addison’s Disease DM Diarrhea CRF Clinical Signs H20 shift to ICF Cells swell CNS sensitive V/D Lethargy Confusion Seizures Muscle weakness Hyponatremia
> 147 mEq/l Etiology Excessive intake Hyperaldosteronism Drowning (salt water) H20 loss DI Renal Fever / Sweat Burns Diarrhea Clinical Signs Osmotic shrinkage CNS sensitive Lethargy Irritability Hemorrhage Seizures Coma Muscle weakness Hypernatremia
< 3.5 mEq/l Etiology Decreased intake ANS V/D Diuretic Sweating Digitalis Insulin excess Clinical Signs Decreased RMP Heart dysrhythmia Bradycardia AV blocks PVCs Sphincter weakness Delayed cardiac repolarization ST segment depression T decreased/inverted Hypokalemia
> 5.5 mEq/l Etiology Increased intake Insulin deficiency Hemolysis Hypoxia CRF Diuretics Burns Extensive surgeries Clinical Signs Inactivate Na+ channels Muscle weakness Muscle paralysis paralysis Cardiac dysrhythmia Peaked T wave Widened QRS Hyperkalemia
< 8.5 mg/dL Etiology Nutritional deficiency Osteoblastic metastasis PTH deficiency Hyperphosphatemia Increased protein binding Chelation therapy Clinical Signs NMJ irritability Muscle Spasm Dyspnea Seizures Colic Tetany Cardiac Dysrhythmia Hypocalcemia
> 10.5 mg/dL Etiology Cancer Hyperparathyroidism Bone remodeling Increased reanal filtering Clinical Signs NMJ decreased Fatigue Lethargy Weakness Cardiac dysrhythmia Bone loss Urolithiasis Hypercalcemia
< 1.5 mEq/l Seen with hypokalemia and hypocalcemia Etiology Decreased dietary intake GI loss Malabsorption Maldigestion Diarrhea CRF Clinical Signs Decreased threshold Tetany Vertigo Nystagmus Muscle spasms hyperreflexia Seizures Cardiac Dysrhythmia Hypomagnesemia
> 2.5 mEq/l Etiology Excess intake (antacids) Decreased renal excretion CRF Adrenal insufficiency Clinical Signs Increased threshold for depolarization Muscle weakness Decreased reflexes Hypotension Decrease Na+ current Cardiac dysrhythmia Bradycardia Hypermagnesemia
Chloride ECF Alterations Hypochloremia < 95 mEq/L Accompanies hyponatremia Severe vomiting Diuretics Hyperchloremia > 103 mEq/L Accompanies hypernatremia Phosphate ICF, stored in bones Alterations Hypophosphatemia < 2.7 mg/dL Antacid use Prolonged decrease cam cause Rickets/’Osteomalacia Hyperphosphatemia > 4.5 mg/dL Renal failure Overuse of laxatives Hypoxia Anions
Acid Base Terms • Define • pH • Acid • Strong • Weak • Volatile : CO2 from CH20 and Fat Metabolism • Nonvolatile: H2SO4, H2PO4 from protein metabolism • Base • Strong • Weak • Salt • Buffer
pH • Define • pH = log (1/[H+]) • pH = -log [H3O+] • Water Dissociation • H2O + H2O H3O+ + OH- • Scale • Blood values • Venous • Arterial • Abnormal Values • Acidemia • Alkalemia
Acid Base Regulation for Balance • Systems • Chemical Buffer Systems • Respiratory System • Renal • Time • Seconds to Minutes • Minutes to Hours • Hours to Days / Weeks • Strength • Problems (reference 7.4 as normal average): • + / - 0.1 changes result in respiratory rate changes • + / - 0.2 to 0.3 changes result in CV and Nervous changes • + / - 0.4 to 0.5 changes result in death
Chemical Buffer Systems • Define • 3 types • Name of System • Buffer formula or name of chemical • Location • Effectiveness [pKa buffer = pH location] • Why important
Bicarbonate Chemical Buffer • H2CO3, HCO3- • Plasma buffer • pK = 6.1 • Important: • Can measure components • pCO2 = 40 mmHg • HCO3- = 24 mM • Can adjust concentration / ratio of components • HCO3- @ kidneys • CO2 @ lungs • Recalculate pH of buffer system in ECF using Henderson-Hasselbach • pH = 6.1 + log(24 / 0.03x40) • pH = 6.1 + log (20/1) • pH = 7.4
Phosphate Chemical Buffer • H2PO4-, HPO4= • ICF, Urine • pK = 6.8 • Important • Intracellular buffer • ICF pH = ~ 6.5 – 6.8 • Renal Tubular Fluids • Urine pH ranges 6.0 – 7.0
Protein Chemical Buffer • Proteins • With Histadine: AA contain imidazole ring, pKa = 7.0 • R-COOH R-COO- + H+ • R-NH2 R-NH3+ • ICF (hemoglobin), ECF • pK = 7.4 • Important • Most numerous chemicals • Most powerful chemical buffer
Respiratory for A/B Balance • Occurs in minutes • CO2 only • Rate changes
Respiratory Controls for Acid /Base balance • Volatile Acid: CO2 • pH changes in CSF • Respiratory Rate • Pons • Medulla Oblongata • Chemoreceptors • pCO2 • pO2
CO2 and pH • Increase CO2 • Increase H+ • Decrease pH • Decrease CO2 • Decrease H+ • Increase pH