180 likes | 248 Views
Bell’s Inequality (Following Harrison). A-B + B-C ≥ A-C This will be true for all A, B, C. Proof. A-BC + -AB-C ≥ 0 Can’t be negative Add A-B-C + AB-C to both sides Right side: 0 + A-B-C + AB-C A-B-C AB-C All are either -------- B or -B A-C. Proof Cont. Left Side
E N D
Bell’s Inequality (Following Harrison) • A-B + B-C ≥ A-C • This will be true for all A, B, C.
Proof • A-BC + -AB-C ≥ 0 Can’t be negative • Add A-B-C + AB-C to both sides • Right side: 0 + A-B-C + AB-C • A-B-CAB-C All are either • -------- B or -B • A-C
Proof Cont. • Left Side • A-BC + -AB-C • A-B-C + AB-C • ------------------- • A-B + B-C • Putting the two sides together gives Bell’s Inequality. • A-B + B-C ≥ A-C