1 / 38

Mgr. Jozef Vozár 2007

Exponenciálna funkcia. Mgr. Jozef Vozár 2007. Definícia. Exponenciálnou funkciou budeme nazývať každú funkciu určenú vzťahom f: y = a x Kde a ε R + { 1 } . Grafom funkcie je exponenciála. Graf pre a > 1. a = 2. a = 3. a = 4. Graf pre 0 <a<1. a = 1/2. a = 1/3. a=1/4.

vanya
Download Presentation

Mgr. Jozef Vozár 2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exponenciálna funkcia Mgr. Jozef Vozár 2007

  2. Definícia Exponenciálnou funkciou budeme nazývať každú funkciu určenú vzťahom f: y = ax Kde a ε R+\{ 1 }. Grafom funkcie je exponenciála

  3. Graf pre a > 1 a = 2

  4. a = 3

  5. a = 4

  6. Graf pre 0 <a<1 a = 1/2

  7. a = 1/3

  8. a=1/4

  9. Vlastnosti D(f) = R H(f) = R+ Prechádzajú bodom [0;1] Pre a>1 sú rastúce Pre 0<a<1 sú klesajúce Exponenciálna fcia je prostá

  10. Exponenciálne rovnice Pri riešení využívame • To že exponenciálna funkcia je prostá ax = ay x = y 2. Vety o operáciách s mocninami

  11. Príklad č.1 3x + 2 = 32x + 7 x + 2 = 2x + 7 x = 5

  12. Príklad č.2 2 2x - 1 = 8 2 2x – 1 = 23 2x – 1 = 3 x = 2

  13. Príklad č.3 4x + 2x+1 = 80 t = 2x t2 + 2t - 80 = 0 t1 = 4 t2 = -10 2x = 4 2x = -10 x = 2

  14. Príklad č.4 4 x – 2 – 17.2 x – 4 + 1 = 0 2x = t t2/16 – 17.t/16 + 1 = 0 /.16 t2 - 17 . t + 16 = 0

  15. R4 t1 = 11 2x = 11 x = log11/log2 x = 3,45

  16. R4 t2 = 6 2x = 6 x = log6/log2 x = 2,58

  17. Príklad 5 7.3 x+1 – 5x+2 = 3x+4 – 5x+3 7.3 x+1 -3x+4 =5x+2 – 5x+3 21.3x – 81. 3x = 25 . 5x – 125. 5x 3x .60 = 5x .100 (3/5)x = 5/3 x = - 1

  18. Príklad 6 xx = x Logaritmujeme rovnicu x.log x = log x x.log x - log x = 0 log x.(x – 1) = 0 log x = 0 x – 1 = 0 x = 1

  19. Príklad 7 3.4log x – 25.2log x + 8 = 0

  20. R7 t = 2log x 3.t2 – 25.t + 8 = 0 t1 = 8 t2 = 1/3

  21. R7 2log x = 8 log x = 3 x = 1000

  22. R7 2log x = 1/3 log x. log 2 = log 1 – log 3 log x = - log3/log2 x = 10 - log3/log2 x = 10-1.585 = 0.0026

  23. Príklad 8 2.4x - 5.2x + 2.4x-1 = 0

  24. Riešenie t = 2x 2.t2 – 5t + 2.t2/4 = 0/ .2 4.t2 - 10t + t2 = 0 5 t2 - 10t = 0 t1 = 0, t2 = 2 x = 1

  25. Príklad 9 4x + 3x + 2 = 4x+3 - 3x + 2

  26. Riešenie 2. 3x + 2 = 4x+3 -4x 2. 3x + 2 = 4x (64 – 1) 18. 3x = 63. 4x (3/4)x = 63/18 = 21/6 = 7/2 x log3/4 = log 7/2 x = - 4,36

  27. Príklad 10 xx – x-x = 3( 1 + x-x)

  28. Riešenie xx = t t – 1/t = 3 (1 +1/t) t – 4/t – 3 = 0 t2 – 3t – 4 = 0 t1 = 4, t2 = -1 xx = 4 x = 2

  29. Príklad 11 log (x + 1) + log (x – 1) – log x = log (x + 2) (x + 1) (x – 1) = x. (x + 2) x2 – 1 = x2 + 2x x = - 0,5 Sk.log(0,5) + log (-1,5) – log(-0,5) = log(1,5) Rovnica nemá korene.

  30. Riešenie (x + 1) (x – 1) = x. (x + 2) x2 – 1 = x2 + 2x x = - 0,5 Sk.log(0,5) + log (-1,5) – log(-0,5) = log(1,5) Rovnica nemá korene.

  31. Príklad 12 log(4x + 6) – log(2x – 1) = 1

  32. Riešenie 4x + 6 –––––– = 10 2x – 1 4x + 6 = 20x – 10 x = 1 Sk. log10 – log 1 = 1 x = 1

  33. Príklad 13 1 xlog x – 1 = 10( 1 - ––- ) xlog x

  34. Riešenie t =xlog x t – 1 = 10( 1 – 1/t) t2– 11t + 10 = 0 t1 = 10, t2 = 1

  35. Riešenie xlog x = 10 log x . log x = 1 log x = 1, log x = - 1, x = 10, x = 1/10

  36. Riešenie xlog x = 1 log x . log x = 0 log x = 0 x = 1

  37. Príklad 14 4x – 3x-1/2 = 3x+1/2 - 22x-1

  38. Riešenie 4x + 22x-1 = 3x-1/2 + 3x+1/2 22x(1 + ½) = 3x(3-1/2 + 31/2) (4/3)x = 8/271/2 x = (log8-1/2log27)/(log4-log3) x = 0,0625

More Related