1 / 15

Chapter 5 :

Chapter 5 :. Processing . Or:. Detection of Signals in Noise and Clutters. Matched Filters. Output of a Matched Filter occurred in IF stage and : . Frequency response a Matched Filter: . S(f) is signal spectrum and t m is signal length . Example: A Rectangular Pulse.

varana
Download Presentation

Chapter 5 :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 : Processing Or: Detection of Signals in Noise and Clutters

  2. Matched Filters Output of a Matched Filter occurred in IF stage and : Frequency response a Matched Filter: S(f) is signal spectrum and tm is signal length Example: A Rectangular Pulse

  3. Other Pulses

  4. Detection Criteria (Detection Decisions) 1.Neyman Pearson Observer: Based on a classical statistical theory for decision of detection • Have two types of errors : • 1. noise is detected as a target when noise is alone. False Alarm • 2. Signal is present, but it is erroneously considered to be noise. Missed Detection is probability function of signal plus noise 2.Likelihood Ratio Receiver: Based on statistical decision and define: 3. Inverse Probability Receiver: An analytical basis to model optimum receiver. This method is a academic interest and not practical for decisions. 4. Sequential Detection: • In Neyman Pearson Observer a number of pulses are considered for detection decision. • When S/N is large, no need to further pulses. A small number of pulse is sufficient to decision. This procedure is named as Sequential Detection.

  5. Detectors 1. Optimum Envelope detector Law : Linear Detector IF Amp. Rectifier Video Amp. • Optimum detector is based on Likelihood Ratio Receiver : I0is model based Bessel function zero order and ais amplitude of the sin wave and vis amplitude of IF. • Suitable approximation is : • Linear Law Detector : • Have High dynamic range and preferred • For large of S/N we have a >>1 and then: • Square Law Detector : • Have distortion for signal • For small of S/N we have: • 2. Logarithmic Detectors : Logarithmic receivers • The output of the receiver is proportional to the logarithm of input envelope. • To prevent of saturation of receivers in non-MTI systems similar Log-FTC. • In MTI systems, nonlinearity is caused that the improvement factor is reduced. • The loss due to logarithmic detection is limited up to 1.1 dB with the increasing of number of pulses.

  6. Detectors 3. I & Q Detector : In phase and quadrature phase channel Used in MTI for blind phase phenomena 3. Coherent Detector : Mixer • A single channel detector similar to in phase channel. • Reference single at the same exact frequency and same exact phase.

  7. Automatic Detection Manual Detection (Operator Detection): PPI display or A-scope integrates pulses in operator’s eye memory. Automatic Detection and Tracking (ADT) act as following : • Quantization of the radar coverage into range (or angle) resolution cells. • Sampling at least one sample per cell or further. • Analog to digital conversion of input signal. • Signal processing in the receiver to remove noise, clutter and interference. • Integration of pulses in each resolution cell. • CFAR operation when the receiver don’t remove all clutter and interferences. • Clutter map generation to provide location of clutters. • Threshold detection to select of target echo. • Measurement of range and angle of the target. Automatic Detection (Machine Detection): By computer processing

  8. Integration of Pulses In early radars : integration of pulses is performed by the operator’s eye memory in cathode ray tube (CRT) . In Modern radars : Several types of integrators are classified as following : • Moving window integrators. • Binary integration. • Batch integrators. • Feedback Integrators. • Mean Integrators. • Median integrators. • Censored (removed) mean detectors. • Adaptive detectors. • Non-parametric detectors. • Distribution detectors are usually considered as CFAR. • integration of pulses is performed by processing. • These integrators are called detectorsin technical literatures. Binary detector or Double detector or m-of-n detector • M pulse is sufficient from n pulse to detect Most of these detectors are academic interests and aren't applicable for operational radar systems

  9. Integration of Pulses Optimum Number of Pulses in Binary integration: • Feedback Integrator:

  10. Integration of Pulses Pulse Integration is categorized in two types • Coherent integration • Non-coherent integration

  11. CFAR Receivers • A false alarm is an erroneous radar target detection decision caused by noise or other interfering signals exceeding the detection threshold. • The False Alarm Rate (FAR) is calculated using the following formula: • a threshold is set too high: Probability of Detection (P.d.) = 20% • bthreshold is set optimal: P.d. = 80% , but one false alarm arises!. False alarm rate = 1 / 666 = 1,5 x10-3  .   • cthreshold is set too low: a large number of false alarms arises! • dthreshold is set variable, constant false-alarm rate is occurred . • If the threshold is set too low, the large number of false alarms will mask detection of valid targets. Different threshold levels

  12. CFAR Receivers • Constant False Alarm Rate (CFAR) generate a adaptive threshold for detection decision. • Cell Averaging CFAR (CA-CFAR) : • Other form of CFAR : • Siebert CFAR: The old version of CFAR in 1960 for AN/FPS-23 ,US air force. • Hard limiter : It is a Dicke fix which hasa broad band IF amp. and a hard limiter and narrowband match filter. For anti jamming applications and impulse-like noise. • Log-FTC: It is a CFAR when the noise and clutter have a Rayleigh pdf.

  13. CFAR Receivers • CFAR Loss is Defined as : Effect ofClutter’s Edges : • Clutter’s Edges are change threshold level. • GO-CFAR reduces this effect by using the greater of the two sets of reference cells. • GO-CFAR introduces an additional loss of 0.1-0.3 dB. Effect ofMultiple Targets: • Multiple targets in res. cells increase threshold level. • In this case a number of res.cells is removed (censored). • This procedure is called ‘’Censored Mean Level Detector’’ (CMLD). • Other method for canceling multiple targets is ‘’ordered statistic’’ (OS-CFAR)

  14. Signal Management

  15. Signal Management • Signal Processing: Signal processing is detection targets in noise, clutter and interference such as: • Matched filter to maximize S/N. • Detector/ Integrator. • Clutter reduction. • CFAR. • Electromagnetic compatibility (EMC). • Electromagnetic Counter Countermeasures (ECCM). • Threshold detection. • Data Processing: Data processing is actions after detection of target such as: • Target location: in range angle velocity and ... • Target trajectory: target track that is the time history target location. • Target recognition: type of target e.g. recognition of aircraft from birds and ... • Weapon control : in fire control systems (FCS).

More Related