1 / 24

Hash Tables

Learn about Binary Search Trees, Hash Tables, and Hash Functions. Explore various applications and examples for efficient data storage and retrieval using C programming. Master search and insert operations with key insights.

vaughnv
Download Presentation

Hash Tables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hash Tables

  2. Overview • Information Retrieval • Review: Binary Search Trees • Hashing. • Applications. • Example. • Hash Functions.

  3. Example: Bibliography • R. Kruse, C. Tondo, B. Leung, “Data Structures and Program Design in C”, 1991, Prentice Hall. • E. Horowitz, S. Salini, S. Anderson-Freed, “Fundamentals of Data Structures in C”, 1993, Computer Science Press. • R. Sedgewick, “Algorithms in C”, 1990, Addison-Wesley. • A. Aho, J. Hopcroft, J. Ullman, “Data Structures and Algorithms”, 1983, Addison-Wesley. • T.A. Standish, “Data Structures, Algorithms & Software Principles in C”, 1995, Addison-Wesley. • D. Knuth, “The Art of Computer Programming”, 1975, Addison-Wesley. • Y. Langsam, M. Augenstein, M. Fenenbaum, “Data Structures using C and C++”, 1996, Prentice Hall.

  4. Insert the information into a Binary Search Tree, using the first author’s surname as the key

  5. Kruse Horowitz Sedgewick Aho Knuth Langsam Standish Insert the information into a Binary Search Tree, using the first author’s surname as the key

  6. Complexity • Inserting • Balanced Trees O(log(n)) • Unbalanced Trees O(n) • Searching • Balanced Trees O(log(n)) • Unbalanced Trees O(n)

  7. hash function Hashing hash table 0 1 key pos 2 3 : : TABLESIZE - 1

  8. Example: hash table 0 hash function 1 “Kruse” 5 2 3 4 Kruse 5 6

  9. Hashing • Each item has a unique key. • Use a large array called a Hash Table. • Use a Hash Function.

  10. Applications • Databases. • Spell checkers. • Computer chess games. • Compilers.

  11. Operations • Initialize • all locations in Hash Table are empty. • Insert • Search • Delete

  12. Hash Function • Maps keys to positions in the Hash Table. • Be easy to calculate. • Use all of the key. • Spread the keys uniformly.

  13. Example: Hash Function #1 unsigned hash(char* s) { int i = 0; unsigned value = 0; while (s[i] != ‘\0’) { value = (s[i] + 31*value) % 101; i++; } return value; }

  14. Example: Hash Function #1 value = (s[i] + 31*value) % 101; • A. Aho, J. Hopcroft, J. Ullman, “Data Structures and Algorithms”, 1983, Addison-Wesley. ‘A’ = 65 ‘h’ = 104 ‘o’ = 111 value = (65 + 31 * 0) % 101 = 65 value = (104 + 31 * 65) % 101 = 99 value = (111 + 31 * 99) % 101 = 49

  15. Example: Hash Function #1 value = (s[i] + 31*value) % 101; Hash Key Value Aho 49 Kruse 95 Standish 60 Horowitz 28 Langsam 21 Sedgewick 24 Knuth 44 resulting table is “sparse”

  16. Example: Hash Function #2 value = (s[i] + 1024*value) % 128; Hash Key Value Aho 111 Kruse 101 Standish 104 Horowitz 122 Langsam 109 Sedgewick 107 Knuth 104 likely to result in “clustering”

  17. Example: Hash Function #3 value = (s[i] + 3*value) % 7; Hash Key Value Aho 0 Kruse 5 Standish 1 Horowitz 5 Langsam 5 Sedgewick 2 Knuth 1 “collisions”

  18. Insert • Apply hash function to get a position. • Try to insert key at this position. • Deal with collision.

  19. Example: Insert Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth hash table Aho 0 Hash Function 1 Aho 0 2 3 4 5 6

  20. Example: Insert Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth hash table Aho 0 Hash Function 1 Kruse 5 2 3 4 Kruse 5 6

  21. Example: Insert Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth hash table Aho 0 Hash Function Standish 1 Standish 1 2 3 4 Kruse 5 6

  22. Search • Apply hash function to get a position. • Look in that position. • Deal with collision.

  23. Example:Search Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth hash table Aho 0 Hash Function Standish 1 Kruse 5 2 3 4 Kruse 5 found. 6

  24. Example:Search Aho, Kruse, Standish, Horowiz, Langsam, Sedgewick, Knuth hash table Aho 0 Hash Function Standish 1 Sedgwick 2 2 3 4 Kruse 5 Not found. 6

More Related