1 / 9

Limits to Diversification

Limits to Diversification. Assume w i =1/N,  i 2 =  2 and  ij = C  p 2 =N(1/N) 2  2 + (1/N) 2 C(N 2 - N)  p 2 =(1/N) 2 + C - (1/N)C as N   p 2 = C average covariance. Presence of Risk free Security. R f = risk free rate  2 f = 0

vega
Download Presentation

Limits to Diversification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Limits to Diversification Assume wi=1/N, i2 = 2 and ij= C p2 =N(1/N)2 2 + (1/N)2C(N2 - N) p2 =(1/N)2 + C - (1/N)C as N  p2 = C average covariance

  2. Presence of Risk free Security Rf = risk free rate 2f = 0 Combining risk free asset and a risky portfolio: E(Rp) = wf E(Rf) + wA E(RA) p2 =wA A2 E(RA) Rf A

  3. Efficient Frontier E(R) Efficient frontier Opportunity set  Efficient Frontier: the upper boundary of the opportunity set

  4. Assumptions • Investors can choose on the basis of mean-variance criterion • Normal distribution of asset returns or quadratic utility function • Investors have homogeneous expectations • planning horizon • distribution of security returns • There are no frictions in the capital markets • no transactions costs • no taxes on dividends, capital gains, interest income • Information available at no cost

  5. Efficient Frontier with Risk Free Security E(R) M Rf  M is the market portfolio

  6. Risk and Return Capital Market Line: Separation Theorem: The determination of optimal portfolio of risky assets is independent from individual’s risk preferences.

  7. Contribution to portfolio risk The risk that an individual stock contributes to the risk of a portfolio depends on: -proportion invested in that stock, wi -its covariance with the portfolio, iM Therefore, Contribution to risk = wi iM Ratio of stock i’s contribution to the risk of portfolio: wi iM / 2M The ratio iM / 2M = beta coefficient

  8. Capital Asset Pricing Model E(RM) - Rf = Risk premium on the market E(Ri) - Rf = Risk premium on stock i An investor can always obtain a risk premium BA(E(RM) - Rf) by combining M and the risk free asset. Thus: E(Ri) - Rf = Bi(E(RM) - Rf) or E(Ri) = Rf + Bi(E(RM) - Rf)

  9. Security Market Line E(R) E(RM) Rf B BM=1

More Related