540 likes | 689 Views
不安定核反応実験における 高速中性子の検出 Fast Neutron Detection in Unstable Nuclei Reaction Experiment. Ryuki Tanaka Tokyo Institute of Technology. Background. Proton-rich. n. 9 L i. n. Oxygen Anomaly. proton number. 11 Li. Neutron Halo ( 11 Li, 14 Be, 22 C, etc.). Stable. Neutron-rich.
E N D
不安定核反応実験における高速中性子の検出Fast Neutron Detection inUnstable Nuclei Reaction Experiment Ryuki Tanaka Tokyo Institute of Technology
Background Proton-rich n 9Li n Oxygen Anomaly proton number 11Li Neutron Halo (11Li, 14Be, 22C, etc.) Stable Neutron-rich neutron number Breakup reactions of extreme neutron-rich nuclei at Intermediate energies Invariant Mass Spectroscopy involving Detection of Fast Neutrons
Invariant Mass Spectroscopy "Mass" measurement of 26O (Unbound) for study of the Oxygen Anomaly E 26O Erel(relative energy) 24O+n+n Neutron Measurement 26O (unbound) n 27F 24O n E/A ~250 MeV C target @ RIBF, RIKEN
1. Development of the large acceptance neutron detector "NEBULA" 3. Development of next generation neutron detector "HIME" 2. Evaluation of newly developed simulator
Momentum of Neutron 5 Photomultiplier Tube y tl z Plastic scintillator x target (r1, t1) ~10 m (r0, t0) p n n n beam n+C, n+H → charged particles (p, α, etc.) Time of Flight (TOF), Position →E, p t1 ∝tl + tr x1 ∝tl - tr y1,z1=geo. tr
Neutron Detector "NEBULA" NEutron-detection system for Breakup of Unstable-nuclei with Large Acceptance ✔ Key Component of spectrometer SAMURAI@RIKEN 24cm+24cm 180cm x 120 modules wall2 p n 360cm wall1 NEUT VETO (distinguish charged particle) a Single Module (NEUT) 180cm 12cm SAMURAI Commissioning Experiment in March 2012 12cm → evaluation of NEBULA
SAMURAI Commissioning Experiment 1 ・Quasi-monoenergetic ・Single Neutron ・Cross Section is well known → TOF Resolution, Efficiency 7Li(p,n)7Be(g.s.+0.43 MeV) SAMURAI Magnet Bmax=3T, superconducting p p n natLi 200 MeV (250 MeV) NEBULA
Time of Flight Resolution Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) σTOF=335(5) ps Counts total 7Be other excited states + scattered neutrons 6Li(p,n)6Be (4.4%) All effects not related to NEBULA taken into account TOF(measured) - TOF(calculate) (ns) Intrinsic Resolution: σTOF=263(6) ps cf.) ~300 ps (design value)
Efficiency Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) 32.3(4) % Counts total 6Li(p,n)6Be (4.4%) 7Be other excited states + scattered neutrons ~6% correction for neutron flux loss, etc. Intrinsic Efficiency: 34.7±0.4(stat.)±1.0(syst.)% En (MeV) cf.) 37% Geant4 with INCLXX 40% DEMONS
SAMURAI Commissioning Experiment 2 C(14Be,12Be+n+n) ・2-neutron event → cross-talk rejection SAMURAI Magnet Bmax=3T, superconducting n n 14Be C 220 MeV/A NEBULA 12Be
2-neutron event and Cross-talk event wall2 β12 wall1 NEUT VETO p p n n n n Cross-talk event β02 cross-talk event satisfy β12 < β01 β01 → β12 > β01 can only be 2-neutron event 2-neutron event selection: β01/β12 < 1 2-neutron 1-neutron
1-Neutron Event Pb(15C,14C+n) 2-Neutron Event C(14Be,12Be+n+n) fake 2-neutron Crosstalk 2-neutron Crosstalk (+ 2-neutron) Counts Counts 43% (~2% is fake) 13% → ~1/20 contribution β01/β12 β01/β12 (0 MeV < Erel <1 MeV)
C(14Be,12Be+n+n) 87(5) keV (1σ) preliminary Counts β01/β12 projection to x axis Erel (MeV) T. Sugimoto et al., Phys. Lett. B 654, 160 (2007) En=68 MeV/A 100 keV (1σ) 14Be (2+) β01/β12 < 1 is valid cross-talk rejection procedure !!
Development of Simulator ✔Simulation is Needed for Analysis and Development of Neutron Detector ・ response function ・ acceptance ・ efficiency etc. ✔ Simulator for neutron detector array is Not established for En ~ 250 MeV neutron → ・ developed new simulator with Geant4 ・ compare with SAMURAI commissioning data 7Li(p,n)7Be(g.s.+0.43 MeV) (En=200 MeV)
Evaluation of Simulator compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012). BERT Experiment Counts MENATER INCLXX Light Output (MeVee)
Evaluation of Simulator compare three physics models for n+plastic scintilator ・ BERT (intranuclear cascade model) ・ INCLXX (intranuclear cascade model) ・ MENATE_R (treat each reaction channel) Z. Kohley et al., Nucl. Instr. and Meths. A 682, 59 (2012). w/o 12C(n,p)12B MENATER MENATER MENATER Efficiency (%) Efficiency(sim.) / Efficiency(exp.) Experiment BERT INCLXX BERT INCLXX Light Output Threshold (MeVee) Light Output Threshold (MeVee) INCLXX gives best agreement
Neutron Detector "HIME" HIgh resolution detector array for Multi-neutron Events 1.8m 12cm 12cm NEBULA sy~5cm, sx=sz~3.5cm, st~0.2ns DErel=84 keV (1σ) @1MeV 10cm 40cm 1.7m 40cm 1m 2cm HIME sx=sy~1.2cm, sz~0.6cm, st~0.1ns DErel=40 keV (1σ) @1MeV 4cm
Cross-talk Rejection Method NEBULA β01/β12 < 1 → lose about half of 2-neutron event NEBULA: ε4n~0.01%
Cross-talk Rejection Method HIME tracking of recoiled proton calculate the scattered neutron kinematics
Cross-talk Rejection Method Geant4 Simulation z 1010 1000 1020 1030 1040 x -20 0 20 20 Cross-talk event 10 p p p p p n n n n n n n n n y 0 2-neutron 1-neutron -10 -20 signal position of one event
Cross-talk Rejection Method Geant4 Simulation z 1010 1010 1000 1000 1020 1020 1030 1030 1040 1040 x x -20 -20 0 0 20 20 20 20 assume n+p elastic 10 10 y y 0 0 -10 -10 -20 -20 signal position of one event
Cross-talk Rejection Method Geant4 Simulation z 1010 1000 1020 1030 1040 x -20 0 20 20 Cross-talk event 10 p p n n n y 0 1-neutron -10 -20 signal position of one event HIME: ε4n~1% (goal)
conclusions ― large acceptance neutron detector NEBULA ― ・ TOF Resolution : 263(6) ps (En=200 MeV) → achieved the design value ~300 ps ・ Efficiency : 34.7±0.4(stat.)±1.0(syst.)% (En=200 MeV) → good agreement with newly developed simulator: 37% ・ Cross-talk rejection: β01/β12 < 1 ~1/20 contribution of cross-talk for 14Be measurement ― Simulation ― ・ New simulation code reproduce SAMURAI experiment ― next generation neutron detector HIME ― ・ Relative Energy Resolution 40 keV at Erel=1 MeV ・ 2-neutron event selection method is established
Analysis of NEBULA 7Li(p,n)7Be(g.s.+0.43 MeV)
Time of Flight Resolution En = 200 MeV Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) σTOF=335(5) ps Counts total 7Be other excited states + scattered neutrons 6Li(p,n)6Be (4.4%) subtract fluctuation of ・ beam velocity ・ time of neutron origin TOF(measured) - TOF(calculate) (ns) σTOF=263(6) ps (En = 200 MeV) σTOF=257(8) ps (En = 250 MeV) NEBULA's contribution to TOF resolution:
Energy Resolution En = 200 MeV Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) σE=2.59(4) MeV Counts / 0.1 ns total 7Be other excited states + scattered neutrons 6Li(p,n)6Be (4.4%) subtract fluctuation of ・ neutron velocity ・ time of neutron origin Energy (MeV) σE=2.03(5) MeV (En = 200 MeV) σE=3.00(8) MeV (En = 250 MeV)
Efficiency En = 200 MeV Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) 32.3(4) % Counts total 7Be other excited states + scattered neutrons 6Li(p,n)6Be (4.4%) according to simulation ~ 6-7% correction need En (MeV) 34.7(4)% (En = 200 MeV) 34.3(7)% (En = 250 MeV) NEBULA's intrinsic efficiency:
Efficiency En = 200 MeV Threshold level = 6 MeVee θlab < ±40 mrad 7Li(p,n)7Be(g.s.+0.43MeV) 32.3(4) % Counts total 7Be other excited states + scattered neutrons 6Li(p,n)6Be (4.4%) count right part of energy dist. → 20508 counts full fit procedure → 20191 counts En (MeV) 1.5% difference (FWHM) NEBULA's intrinsic efficiency:
Efficiency correction ~ 6-7% correction ・ neutron flux loss by materials - Li target - neutron window - air between neutron window and NEBULA ・ scattered neutrons ~3% ~3% 6.9% (En = 200 MeV) 6.2% (En = 250 MeV)
One-Neutron Event Pb(15C,14C+n) Two-Neutron Event C(14Be,12Be+n+n) β01/β12 β01/β12 Erel (MeV) Erel (MeV)
One-Neutron Event Pb(15C,14C+n) Two-Neutron Event C(14Be,12Be+n+n) Counts Counts β01/β12 β01/β12 (0 MeV < Erel < 100 MeV)
・ MENATE_R (treat each reaction channel) MENATE_R is ported code of neutron detector simulator MENATE written in FORTRAN
BERT, INCLXX (Geant4 built in class) ・ BERT: Bertini Intranuclear Cascade Model (Bertini: H. W. Bertini) - M. P. Guthrie, R. G. Alsmiller and H. W. Bertini, Nucl. Instr. Meth, 66, 1968, 29. - widely used ・ INCLXX: INCL++ → c++ version of INCL INCL: Liege Intranuclear Cascade Model (Liege: the Belgian city) - developed and validated against recent data - typical users are from the nuclear physics community studying spallation processes (Journal of Physics: Conference Series 119 (2008) 032024) Nuclear Instruments and Methods in Physics Research A 491 (2002) 492–506 model limit ~200 MeV < Ein < ~10 GeV
Efficiency(sim.) / Efficiency(exp.) 6 MeVee Threshold (MeVee)
Detection Method NEBULA HIME classical detection technic tracking detection ― reconstruct momentum by a signal from one module ― reconstruct momentum by a track of recoiled proton → efficient cross-talk rejection for multi-neutron detection NEBULA: ε4n~0.01% HIME: ε4n~1% (goal)
Cross-talk Rejection Geant4 Simulation 2n event Cross-talk event p p n p n p n n n n further simulation is ongoing
Time Resolution ordinary event tracked event (n>=3) Energy dependence of timing resolution
Efficiency and Erel Resolution ordinary event ordinary event Geant4 Simulation tracked event (n>=3) tracked event (n>=3) 8.8% 42 keV 18% 37% 3.3% 40 keV Relative Energy Resolution (keV) Efficiency (%) improve only ~5% En (MeV) Relative Energy (MeV) ・ optimization of timing calculation ・ HIME is to small ・ time resolution is already high (100 ps) (En = 250 MeV, 10 m, A=100) High Resolution is already obtained
Simulated Example 12B 10Li(1+,2+)9Li+n (RIBF exp. Planned @250MeV/nucleon) Two p-wave states ( p (p3/2)x n(p1/2) 1+, 2+) should be there! But not yet clarified . (Myo et al. TOSM) HIME NEBULA 10Li (1+ and 2+) 10Li (1+ and 2+) 2+ 1+ Erel(9Li+n) Erel(9Li+n)