220 likes | 356 Views
L/E analysis and limit on decoherence from SK. I.Higuchi for SK collaboration ICRR Jul/7/2007. Content. Introduction SK experiment L/E oscillation analysis results. L/E oscillation analysis with exotic model. Summary. Introduction.
E N D
L/E analysis and limit on decoherence from SK I.Higuchi for SK collaboration ICRR Jul/7/2007
Content • Introduction • SK experiment • L/E oscillation analysis results. • L/E oscillation analysis with exotic model. • Summary
Introduction • We will present SK-I+II combined L/E nm ⇔ nt oscillation analysis result. And we will present test of exotic model (neutrino decoherence, neutrino decay) separately. • But, neutrino decoherence (decay) and oscillation can coexist. We can constrain decoherence (decay) parameter, if we test L/E oscillation analysis with exotic models. We report the L/E oscillation analysis with exotic models.
Super-Kamiokande 1996199719981999 20002001200220032004200520062007 SK-I SK-II SK-III accident reconstruction • 50kton cylindrical water Cherenkov detector(22.5kt fiducial vol.) • 1000m underground(2700m water equiv.) • optically separated into ID and OD SK-II PMT enclosure : Acrylic (front) and Fiberglass (back) SK-I 11146 Num. of inner detector PMTs 5182 40 % Photocathod coverage 19 % SK-I (1489days) + SK-II (804days) SK-III physics started in July 2006.
L/E oscillation analysis Dm2L Neutrino oscillation : Pmm = 1 – sin22qsin2( ) E L m Neutrino decay : Pmm = (cos2q + sin2q x exp(– ))2 2t E L 1 Neutrino decoherence : Pmm = 1 – sin22q x (1 – exp(–g0 )) 2 E Use events with high resolution in L/E The first dip can be observed • Direct evidence for oscillations • Strong constraint to oscillation parameters, especially Dm2 value
Reconstruction of E and L Neutrino flight length Neutrino energy En Eobserved Eobserved En Zenith angle Flight length Neutrino energy is reconstructed from observed energy using relations based on MC simulation Neutrino flight length is estimated from zenith angle of particle direction
Results of L/E oscillation analysis • SK-I+II Assuming nm⇔nt c2min= 83.9/82 d.o.f at(sin22θ,Δm2) =(1.00,2.3x10-3eV2 ) 2.0x10-3 < Dm2 < 2.8x10-3 eV2 0.93 < sin22qat 90% C.L. c2osc = 83.9/82 d.o.f c2dcy= 107.1/82 d.o.f,Dc2=23.2(4.8σ) c2dec = 112.5/82 d.o.f, Dc2 = 27.6(5.3σ) We exclude neutrino decoherece, decay about 5 s
Dm2L Pmm = 1 – sin22qsin2( ) E Pmm = sin4q + cos4q x exp(– ) +2sin2qcos2q x exp(– ) ×cos( ) L m t E L m 2t E Dm2L Dm2L Pmm = 1 – sin22q x (1 – exp(–g0 ) ×cos( )) L 1 2E 2E 2 E oscillation and exotic mode survive probability nm⇔nt Oscillation : nm⇔ntOscillation+decay : nm⇔ntOscillation+decoherence :
Allowed limit at 90% C.L.: <1.4x10-22 SK-I+II Results of L/E oscillation analysis with decoherence • SK-I+II c2min = 83.8/81 d.o.f At (g0,Dm2,sin22q)= (0 GeV,2.4x10-3eV2,1.00) • 90% C.L. allowed limit: • 1.4x10-22 GeV • Improved by one order of magnitude • compared with previous limit • previous limit:2.0x10-21GeV • P.R.L. 85.1166(2000) E.Lisi, A.Marrone, • D.Montanino • Effects of decoherence on the distributions of lepton events as a function of the • zenith angle using SK-I data.
Results of L/E oscillation analysis with decay • SK-I+II c2min = 83.8/81 d.o.f At (m/t,Dm2,cos2q)= (0 GeV/km,2.4x10-3eV2,0.5) • 90% C.L. allowed limit: 3.2x10-5GeV/km previous best fit: 7.8x10-5GeV/km P.R.L. 82.2640(1999) V.Barger, J.G.Learned, S.Pakvasa,T.J.Wiler Effects of decoherence on the distributions of lepton events as a function of the zenith angle using SK-I data. Allowed limit at 90% C.L.: <3.2x10-5
summary • We reported L/E oscillation analysis with exotics. • We get c2 minimum for nm⇔nt oscillation. • SK constrains on exotics models. g0< 1.4x10-22 GeV at 90% C.L. for decoherence m/t < 3.2x10-5 GeV/km at 90% C.L. for decay
L/E resolution cut Select events with high resolution in L/E Full oscillation 1/2 oscillation Bad L/E resolution for horizontally going events due to large dL/dcosq low energy events due to large scattering angle D(L/E)=70%
L/E event summary after resolution cut SK-I 1489 days SK-II 804 days Data MC CC nm Data MC CC nm FC single-ring multi-ring stopping through-going 1619 2105.6 (98.3%) 502 813.0 (94.2%) 114 137.0 (95.4%) 491 670.1 (99.2%) 895 1140.6 (98.6%) 262 402.4 (93.6%) 64 70.7 (94.4%) 214 338.5 (99.2%) PC 2726 3725.7 Total 1435 1952.2
Definition of c2 Poisson with systematic errors Nobs : observed number of events Nexp : expectation from MC ei : systematic error term si: sigma of systematic error Various systematic effects in detector, flux calculation and neutrino interaction are taken into account
SK-I Assuming nm⇔nt c2min= 38.1/40 d.o.f at(sin22θ,Δm2) =(1.00,2.3×10-3eV2 ) SK-II Assuming nm⇔nt c2min= 45.8/40 d.o.f at(sin22θ,Δm2) =(1.00,2.4×10-3eV2 ) Results of L/E oscillation analysis • SK-I+II Assuming nm⇔nt c2min= 83.9/82 d.o.f at(sin22θ,Δm2) =(1.00,2.3×10-3eV2 ) c2osc = 83.9/83 d.o.f c2dcy= 107.1/83 d.o.f,Dc2=23.2(4.8σ) c2dec = 112.5/83 d.o.f, Dc2 = 27.6(5.3σ)
Combined results 2.0x10-3 < Dm2 < 2.8x10-3 eV2 0.93 < sin22qat 90% C.L.
Contour and Dc2 distribution Local minimum
Dm2L Pmm = 1 – sin22qsin2(1.27 ) E Pmm = sin4q + cos4q x exp(– ) +2sin2qcos2q x exp(– ) ×cos( ) L m t E L m 2t E Pmm = 1 – sin22q x (1 – exp(–g0 ) ×cos( )) Dm2L Dm2L Dm2L Pmm = 1 – sin22q x (1 – exp(–g0 ) ×cos( )) L L 1 1 2E 2E 2E 2 2 E oscillation and exotic mode survive probability Oscillation : Oscillation+decay : Oscillation+decoherence : I just show the upper limit. L/E analysis is not sensitive to this model. Wei-san will talk in detail. (I) (II)
SK-I c2min = 38.0/39 d.o.f at (g0,Dm2)= (0 GeV2,2.4x10-3eV2) Results of L/E oscillation analysis with decoherence (II) • SK-II c2min = 45.8/39 d.o.f at (g0,Dm2)= (0 GeV2,2.4x10-3eV2) • SK-I+II c2min = 83.8/80 d.o.f At (g0,Dm2)= (0 GeV2,2.4x10-3eV2) sin22q = 1.00
SK-I SK-II oscillation + decay contours Allowed limit at 90% C.L.: <3.2x10-5 Local minimum due to neutrino decay SK-I+II