560 likes | 761 Views
Adjacent, Vertical, Supplementary, and Complementary Angles Linear Pair, Perpendicular Lines. Adjacent angles are “side by side” and share a common ray. 15 º. 45 º. These are examples of adjacent angles. 45 º. 80 º. 35 º. 55 º. 130 º. 50 º. 85 º. 20 º. These angles are NOT adjacent.
E N D
Adjacent, Vertical, Supplementary, and Complementary AnglesLinear Pair, Perpendicular Lines
Adjacent angles are “side by side” and share a common ray. 15º 45º
These are examples of adjacent angles. 45º 80º 35º 55º 130º 50º 85º 20º
These angles are NOT adjacent. 100º 50º 35º 35º 55º 45º
When 2 lines intersect, they make vertical angles. 75º 105º 105º 75º
Vertical angles are opposite from one another. 75º 105º 105º 75º
Vertical angles are opposite from one another. 75º 105º 105º 75º
Vertical angles are congruent (equal). 150º 30º 150º 30º
Supplementary angles add up to 180º. 40º 120º 60º 140º Adjacent and Supplementary Angles Supplementary Anglesbut not Adjacent
Complementary angles add up to 90º. 30º 40º 50º 60º Adjacent and Complementary Angles Complementary Anglesbut not Adjacent
PracticeDirections: Identify each pair of angles as vertical, supplementary, complementary, linear pairor none of the above.
#1 120º 60º
#1 120º 60º Supplementary Angles Linear Pair
#2 60º 30º
#2 60º 30º Complementary Angles
#3 75º 75º
#3 Vertical Angles 75º 75º
#4 60º 40º
#4 60º 40º None of the above
#5 60º 60º
#5 60º 60º Vertical Angles
#6 135º 45º
#6 135º 45º Supplementary Angles Linear Pair
#7 25º 65º
#7 25º 65º Complementary Angles
#8 90º 50º
#8 90º 50º None of the above
#1 ?º 45º
#1 135º 45º
#2 ?º 65º
#2 25º 65º
#3 ?º 35º
#3 35º 35º
#4 ?º 50º
#4 130º 50º
#5 ?º 140º
#5 140º 140º
#6 ?º 40º
#6 50º 40º
Angle Relationship: Investigation 1 The Linear Pair Conjecture • Materials: paper, pencil, 2 sheets of patty paper & protractor • Draw line PQ and place a point R between P and Q. • Choose another point S not on line PQ and draw ray RS. You have just create a linear pair of angles. • Place the “zero edge” of your protractor along line PQ. What do you notice about the sum of the measures of the linear pair of angles? • Compare your results with those of your class. Does everyone make the same observation? • What is the Linear Pair Conjecture? • Example:
Angle Relationship: Investigation 2 Vertical Angles Conjectures • Materials: paper, pencil, 2 sheets of patty paper & protractor • Fold patty paper, make a crease, outline the crease, place points A & B on the line. • Fold patty paper again so that you form intersecting lines, make a crease, outline the crease, place points D & E on the line and label the intersection C. (Make sure C is between A & B) • Which angles are vertical angles? • Fold the paper again through point C so that <ACD lies on top of <ECB. What do you notice? • What do you notice about their measures?
Angle Relationship Activity p. 54 • Your Turn… • Fold through C so that <ACE lies on DCB. What do you notice? • Compare your results with the class. • What is the Vertical Angles Conjecture? • Use a protractor to measure each angles. Write the measures on drawing. • Name the linear pairs. What do you notice about their measures? • Repeat this activity with another piece of patty paper. What do you notice?
Practice: complementary and supplementary • Let’s Race! • Find a partner, get a deck of cards, and play “Say it faster!” • Whoever say the complement/supplement faster gets the pair of cards. • The person with the most cards, WINS! • 10, Jacks, Queens, Kings, & Aces = 1 • Every other find the complement or supplement.
Practice: Adjacent Vertical • Complete Angles Relationships • Complete Angle Addition • Quiz will be tomorrow • Study guide tomorrow • Test will be on Friday Complementary Supplementary Angle Addition Postulate Linear Pair
Warm-Up: Identify each pair of angles Use: adjacent, vertical, complementary, supplementary, and/or linear pair • 1. <1 & <2 • 2. <1 & <4 2 3 1 • 3. <4 & <5 5 4 • 4. <3 & <4
Warm-Up: Find x and each measure • 1. (5x+ 16)º (6x + 8)º 2. (5x + 18)º (7x + 12)º • 3. (10x + 35)º (13x + 30)º 4. Ray BC is an angle bisector. Find <CBD & <ABC. A 63º B C D