1 / 26

(Rajib Saha,Pankaj Jain,Tarun Souradeep, astro-ph/0508383)

A Blind Estimation of Angular. Power Spectrum of CMB. Anisotropy from WMAP. (Rajib Saha,Pankaj Jain,Tarun Souradeep, astro-ph/0508383). WMAP: Angular power spectrum. Independent, self contained analysis of WMAP multi-frequency maps Blind estimation : no extraneous foreground info. !

vicki
Download Presentation

(Rajib Saha,Pankaj Jain,Tarun Souradeep, astro-ph/0508383)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Blind Estimation of Angular Power Spectrum of CMB Anisotropy from WMAP (Rajib Saha,Pankaj Jain,Tarun Souradeep, astro-ph/0508383)

  2. WMAP: Angular power spectrum Independent, self contained analysis of WMAP multi-frequency maps Blind estimation : no extraneous foreground info. ! I.e., free of uncertainty of foreground modeling IIT Kanpur + IUCAA Black: IITK+IUCAA Red : WMAP team Saha, Jain,Souradeep 2005 (astro-ph/0508383)

  3. WMAP-3: Angular power spectrum Saha, Jain,Souradeep 2006 (preliminary)

  4. Model free Foreground removal • For each frequency channel, i : • CMB anisotropy is achromatic : • Linear combinations of maps of different frequency channels, i. Such that CMB signal is untouched in the final map ) • Determine weights thatminimizetotal power Foreground cleaned map:

  5. 1 DA 1 DA 2 DA 4 DA 2 DA

  6. 48 CLEANED MAPS (K,Ka)+Q2+V2+W12= (C7,CA7) (K,Ka)+Q2+V2+W13= (C8,CA8) (K,Ka)+Q2+V2+W14= (C9,CA9) (K,Ka)+Q2+V2+W23= C10,CA10) (K,Ka)+Q2+V2+W24= (C11,CA11) (K,Ka)+Q2+V2+W34= (C12,CA12) (K,Ka)+Q1+V1+W12= (C1,Ca1) (K,Ka)+Q1+V1+W13= (C2,CA2) (K,Ka)+Q1+V1+W14= (C3,CA3) (K,Ka)+Q1+V1+W23= (C4,CA4) (K,Ka)+Q1+V1+W24= (C5,CA5) (K,Ka)+Q1+V1+W34= (C6,CA6) (K,Ka)+Q1+V2+W12= (C13,CA13) (K,Ka)+Q1+V2+W13= (C14,CA14) (K,Ka)+Q1+V2+W14= (C15,CA15) (K,Ka)+Q1+V2+W23= (C16,CA16) (K,Ka)+Q1+V2+W24= (C17,CA17) (K,Ka)+Q1+V2+W34= (C18,CA18) (K,Ka)+Q2+V1+W12= (C19,CA19) (K,Ka)+Q2+V1+W13= (C20,CA20) (K,Ka)+Q2+V1+W14= (C21,CA21) (K,Ka)+Q2+V1+W23= (C22,CA22) (K,Ka)+Q2+V1+W24= (C23,CA23) (K,Ka)+Q2+V1+W34= (C24,CA24)

  7. One of the 40 cleaned maps obtained from combing the 10 difference assemblies of WMAP

  8. 24 Cross-correlation power spectra

  9. Cross-correlation power spectra without correcting for point source residuals WMAP team Our method

  10. Residual power from unresolved point source

  11. WMAP: Angular power spectrum Independent, self contained analysis of WMAP multi-frequency maps Blind estimation : no extraneous foreground info. ! I.e., free of uncertainty of foreground modeling IIT Kanpur + IUCAA Black: IITK+IUCAA Red : WMAP team Saha, Jain,Souradeep 2005 (astro-ph/0508383)

  12. (74.10.3, 219.80.8) (74.7 0.5, 220.1 0.8 (48.3 1.2, 544 17) (48.8 0.9, 546 10) (41.7 1.0, 419.2 5.6) (41.0  0.5, 411.7 3.5) Peaks of the angular power spectrum

  13. WMAP-3: Angular power spectrum Saha, Jain,Souradeep 2006 (preliminary)

  14. Correlation matrix for the Binned power spectrum

  15. 30Ghz 44Ghz 77Ghz 100Ghz Combination of Planck Channel maps 143Ghz 217Ghz

  16. Input random realization of CMB map (in k unit) Recovered foreground cleaned map (in mk unit)

  17. Difference between input & recovered maps Retaining beam and pixel window smoothing

  18. Difference between input & recovered maps No beam and pixel window smoothing

  19. BiPSDiagnostics of cleaned maps C6: clean C9: cleaner Maps from Saha et al. astro-ph/0508383 (see poster) Filters BIPS: filter A BIPS: filter B B A Saha,Hajian, Souradeep, Jain (in progress )

  20. Simplest case: Anisotropic Noise

  21. Simplest case: Anisotropic Noise

More Related