1 / 27

INFRARED SPECTROSCOPY

INFRARED SPECTROSCOPY. INFRARED SPECTROSCOPY. INTRODUCTION UNITS & MEASURMENT RANGE OF IR RADIATION REQURIMENTS MODES OF VIBRATION INSTRUMENTATION FACTORS EFFECTING VIBRATIONS ADVANTAGES & DISADVANTAGES APPLICATIONS. Introduction. MOLECULES    ATOMS    CONTINOUS MOTION

villanueva
Download Presentation

INFRARED SPECTROSCOPY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. INFRARED SPECTROSCOPY

  2. INFRARED SPECTROSCOPY • INTRODUCTION • UNITS & MEASURMENT • RANGE OF IR RADIATION • REQURIMENTS • MODES OF VIBRATION • INSTRUMENTATION • FACTORS EFFECTING VIBRATIONS • ADVANTAGES & DISADVANTAGES • APPLICATIONS

  3. Introduction MOLECULES    ATOMS    CONTINOUS MOTION OR NATURAL VIBRATIONS    APPLIED IR FREQUENCY = NATURAL FREQUENCY  ABSORPTION OR IR  VIBRATIONS AT MANY RATES   IR SCPECTRA  CHARACTERISTIC FUNCTIONAL GROUPS & BONDS ( FINGERPRINT OF A MOLECULE)

  4. Units & Measurement IR spectrum may be expressed by wave number whose unit is cm-1 • c = • = c/ =/c = (C = velocity of light=3.8*108m/sec) . E = hn = Wavenumber = _______1_________ cm-1 wavelength

  5. Requirements for absorption of IR radiation : • Correct wavelength of radiation: • Natural frequency = Frequency of incident radiation • eg: Hcl 8.7*1013 sec-1 • Electric dipole

  6. Range of IR • Near IR: 0.8 to 2.5m(12000cm-1 –4000cm-1) • Analyzing mixtures of aromatic amines • Determination of protein,fat,moisture,oil content. • Middle IR: 2.5 to 15m ( 4000cm-1 – 650cm-1) • Also known as vibration- rotation region. • This region is divided into: • Group frequency region: 4000cm-1 – 1300cm-1 • Fingerprint region: 1300cm-1 – 650cm-1 • Far IR: 15 to 1000m (650cm-1 –10cm-1 ) • Study of inorganic or organometallic compounds • Sensitive to changes in overall structure of the molecule -1

  7. IR spectra

  8. Example: Vanillin

  9. Modes of vibration • Stretching vibrations • Change in Bond axis • One dimensional motion (n-1) • Non cyclic systems • Occurs at higher frequency

  10. Two types: • Symmetric • Asymmetric

  11. Bending vibrations • Change in Bond angle • Two dimensional (2n-5) • Non cyclic & Linear molecules • Occurs at lower frequency Two types: • In-plane:*Out of plane: 1.Twisting • Scissoring 2.Wagging • Rocking

  12. In plane: Out of plane: Scissoring Twisting Rocking Wagging

  13. Instrumentation

  14. IR Radiation sources • Tungsten filament lamp  • Nernst glower: • Zirconium, Yttrium,Thorium • Heated to 1000 to 1800•c • Radiation – 7100cm-1 (1.4m) • Globar source: • Silicon carbide • Heated to 1300 to 1700•c • Radiation – 5200cm-1 (1.9m) • Mercury arc • Heatedquartz – shorter wavelength • Mercury plasma – longer wavelength • Nichrome wire or coil • Heated by passage of current to 1100•c

  15. Monochormators • Prisms Two types: 1.Single pass 2.Double pass • Gratings

  16. Sample cells & Sampling techniques • Gases • Gas cell – 10cms • Multi pass gas cells • Liquids • Thin film squeezed between 2 IR transparent windows. •  0.1 - 0.3mm thickness • Below 250cm-1 _ CsI flats, sample with water CaF2 flats • Solids Four techniques: • KBr discs/ pellets/ pressed pellet technique • Mulls • Deposited films • Solutions

  17. KBr discs: • 0.1 – 2.0% by wt. • Particle size -  2m. • Hydraulic pressure – 10 tons load. • Discs: 13mm- diameter, 0.3mm- thickness. • 2. Mulls: • Grinding sample with a drop of oil. • Nujol (liquid paraffin) • Complement: Hexacholorobutadiene & chlorofluorocarbon. • 3. Deposited films: • Solution in a volatile solvent on a NaCl flat. • 4. Solutions: • Solvent – CCl4, CS2, CHCl3 • Complementary pair - CCl4 & CS2

  18. Gas cell • NaCl flats • KBr die • Solution cell • Variable path length • cell

  19. Detectors • Thermo couple: •  thermoelectric efficiency e.g. bismuth & antimony. • Two junctions: cold & hot junction. (KBr or CsI)

  20. 2. Golay cell:

  21. 3. Bolometer: • Platinum strip - One arm of the wheatstone bridge. • 4. Thermistor: • Fused mixture of metal oxides. • Electric resistance decreases by 5% per •c. • 5. Semiconductor: • IR photon displaces an electron in the detector. • Lead sulphide or lead telluride. • 6. Pyroelectric detector: • Ferroelectric material operating below the curie point temp (49 •c) • Change in polarization. • Electric signal • Deuterium triglycine sulphate – detecting medium.

  22. Mode of operation

  23. Advantages • All kinds of material can be analyzed. • Provides lot of information. • Fast and easy. • Very small amount of sample is required. • Less expensive. Disadvantages • IR spectra cannot be obtained for Mono atomic • substances e.g.: helium, argon. • 2. IR spectra cannot be obtained for Homonuclear • diatomic molecules like O2 , N2 . • Works best for pure substances but not for • complex mixtures.

  24. Applications • Identification of types of bonds (fingerprint region) • Identification of functional groups in organic compounds • The determination of steroids, hormones, pharmaceutical chemicals.

  25. Factors influencing vibrational frequency: • Vibrational coupling: • Interaction between vibrations can occur (coupling) if the vibrating bonds are joined to a single, central atom and also vibrating with similar frequency,provided that the bonds are reasonably close in a molecule. • Vibrational coupling is influenced by a number of factors; • Strong coupling of stretching vibrations occurs when there is a common atom between the two vibrating bonds • Coupling of bending vibrations occurs when there is a common bond between vibrating groups • Coupling between a stretching vibration and a bending vibration occurs if the stretching bond is one side of an angle varied by bending vibration • Coupling is greatest when the coupled groups have approximately equal energies • No coupling is seen between groups separated by two or more bonds

  26. Hydrogen bonding: • It gives rise to downward frequency shifts. • Stronger hydrogen bond – greater absorption shift towards lower wave number. • On dilution – intensity of such bands decrease & finally disappear.

  27. References • Organic spectroscopy: William Kemp (third edition). • Spectroscopy of organic compounds: P.S.Kalsi. • 3. Instrumental methods of chemical analysis: • Gurdeep R.Chatwal, Sham K.Anand.

More Related