1 / 22

Description of t-band in 182 Os with HFB+GCM

Description of t-band in 182 Os with HFB+GCM . Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan . Takatoshi Horibata Department of Software and Information Technology,

vin
Download Presentation

Description of t-band in 182 Os with HFB+GCM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Description of t-band in 182Os with HFB+GCM Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan TakatoshiHoribata Department of Software and Information Technology, Aomori University, Aomori, Aomori 030-0943, Japan 1

  2. Contents 1. Introduction 2. Three-dimensional Cranking 3. Tilted states and GCM 4. Concluding remarks 2

  3. 1. Introduction: general rotation mode 3

  4. ω x ω x ω z y y wobbling motion tilted axis rotation (high K t-band) ω x x z z y y 4

  5. wobbling band Odegard et al. Phys.Rev.Lett.86(2001), 5866 ω 5

  6. t-band g-band ω 6 P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

  7. 182Os t-band (even component ) g-band 7 P.M.Walker et al., Phys. Lett. B309(1993), 17-22.

  8. theoretical frameworks TAC *S. Frauendorf, Nucl. Phys. A557, 259c(1993) *S. Frauendorf, Nucl. Phys. A677, 115(2000). *S. Frauendorf, Rev. Mod. Phys. 73, 463(2001). HFB+RPA *M. Matsuzaki, Nucl. Phys. A509, 269(1990). *Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996). *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi, Phys. Rev. C65, 041303(R)(2002). *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi, Phys. Rev. C69, 034325(2004) HFB+GCM *A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981). *N. Onishi, Nucl. Phys. A456, 279(1986). *T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996). *T. Horibata, M. Oi, N. Onishi and A. Ansari, Nucl. Phys. A646, 277(1999); A651, 435(1999). *Y. Hashimoto and T. Horibata, Phys. Rev. C74, 017301(2006) *Y. Hashimoto and T. Horibata, EPJ A42, 571(2009). 8

  9. 2. Three-dimensional cranked HFB A.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179 9

  10. Constraints for HFB calculation ψ x x z y y 10

  11. Starting points of tilted wave functions ω 11

  12. 18 Energy vs tilt angle J = 18 ψ x ψ z TAR y y 12

  13. j// ω ω 13

  14. TAR states and K=8 band K ~ const. 30 * sin(15°) = 7.8 28 * sin(16°) = 7.7 26 * sin(17°) = 7.6 24 * sin(18°) = 7.6 TAR 22 * sin(20°) = 7.5 18 * sin(24°) = 7.3 tilt angle (degree) 14

  15. TAR states ( K=8 band) angular momentumJ 15

  16. odd t-band even g-band 3. Tilted states and GCM P.M.Walker et al., Phys. Lett. B309, 17-22(1993). 16

  17. s-branches 28 26 24 ψ 22 ψ 17

  18. D, V smaller ΔE larger Energy splitting in tunneling effect ーΨ V D 18

  19. odd t-band even V g-band P.M.Walker et al., Phys. Lett. B309(1993), 17-22. 19

  20. Energy splitting in GCM generator coordinatea :tilt angleψ ∫ wave function HFB solution ata Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277. M.Oi et al., Phys. Lett. B418(1998), 1. Phys. Lett. B525(2002), 255. 20

  21. GCM amplitudes(J = 24,26,28) (ΔE= 93 keV) ΔE=252 keV ΔE=130 keV 21

  22. 4. Concluding Remarks   1. We have microscopically calculated three-dimensional rotation.   2. The TAR states are expected to be the members of   a band with K = 8 (t-band).  experimental results by Walker’s group.   3. GCM calculations (refinement) are in progress. 22

More Related