240 likes | 394 Views
Geant Simulation of Muon Cooling Rings. Amit Klier University of California Riverside. Outline. A short reminder from Nufact03 The RFOFO ring Geometry Software improvements Simulation results The small dipole ring Geometry Software improvements Some Results. Muc_Geant.
E N D
Geant Simulation of Muon Cooling Rings Amit Klier University of California Riverside
Outline • A short reminder from Nufact03 • The RFOFO ring • Geometry • Software improvements • Simulation results • The small dipole ring • Geometry • Software improvements • Some Results A. Klier - Geant simulation
Muc_Geant • Modified, data-driven Geant3 application for simulating muon cooling • Electric fields added • Runge-Kutta changed to include changing electric fields (eg RF cavities) • Realistic magnetic fields can be read from external field maps A. Klier - Geant simulation
From Nuact03 Tetra ring simulated Rajendran Raja – Nufact 03 A. Klier - Geant simulation
The RFOFO ring • A few code changes w.r.t. Tetra • Realistic magnetic field maps read-in (R. Godang, S. Bracker – MC-Note 271) A. Klier - Geant simulation
The RFOFO ring Full Geant simulation: A. Klier – MC-Note 298 A. Klier - Geant simulation
The ring geometry • 33 m circumference • 12 cells (2.75m): • A wedge absorber • opening angle 110°, • pointing ’upwards’ • 6 RF cavities • 28.75 cm long, • iris radius 25 cm • flat E field in z direction • 2 tilted solenoids • inner/outer r = 77/88 cm • tilt angle ±3° • Only for display here A. Klier - Geant simulation
Closed orbits in a single cell Solid line – the referenceorbit 200 MeV 270 MeV 227 MeV 250 MeV 250 MeV 227 MeV E = 200 MeV E = 270 MeV A. Klier - Geant simulation
Software improvements • ICOOL input/output format used, ecalc9 can be used to calculate emittance • Use initial time of particle at entry • Use virtual detectors A. Klier - Geant simulation
Cooling of a muon beam A. Klier - Geant simulation
Comparison with ICOOL Transmission 6-D emittance A. Klier - Geant simulation
More comparisons Results after 10 turns: Merit factor A. Klier - Geant simulation
Change beam entry angle A. Klier - Geant simulation
The small dipole ring “Weak” (edge) focusing (ideally) scaling Filled with ~10 Atm. hydrogen gas @ 77K Dipole field ~ 2 T For P~200 MeV/c, the radius should be ~60 cm A. Klier - Geant simulation
Field map (from S. Kahn) By in a single quadrant By at R=60 cm Return yoke A. Klier - Geant simulation
Reference orbit • Scale B down to 90% • closed orbit: • P=171.25 MeV/c • Rmin=56.32 cm • (x=0 in virtual detectors) Rmin Virtual detector plane RF cavity (active region) A. Klier - Geant simulation
Ellipses Stable up to y~13 cm Y plane symmetry imposed A. Klier - Geant simulation
Acceptance of the ring “A blob” Py=~19 MeV/c y=~8.5 cm Px=~34 MeV/c More “natural” decrease with no x-z plane symmetry x=~6.5 cm A. Klier - Geant simulation
“Cooling” with no scattering Xinitial=6 cm Yinitial=8 cm tinitial= –1.5 ns Xcentral=0.04 cm Ycentral=0 cm tcentral=0 ns PXinitial=30 MeV/c PYinitial=17.5 MeV/c Einitial=213 MeV PXcentral=0.12 MeV/c PYcentral=0 MeV/c Ecentral=201.8 MeV A. Klier - Geant simulation
Software improvements • More flexibility – less “hard-coding”, more external parameters • Field map reading code used to be RFOFO-specific, now more general • More RF parameters • Cavities in small dipole ring are off-center • So far, only perfect pillbox (or flat field..) cavity are simulated • Flexibility: different frequencies, gradients, types can be used in the same channel A. Klier - Geant simulation
To do • Simulate the small dipole ring with a beam • Introduce more realistic features: • Injection • Detectors A. Klier - Geant simulation
Additional Slides A. Klier - Geant simulation
Comparison with ICOOL Transverse emittance Longitudinal emittance A. Klier - Geant simulation