200 likes | 417 Views
Reconfigurable Ultra Low Power LNA for 2.4GHz Wireless Sensor Networks. TarisT., Mabrouki A., Kraïmia H., Deval Y., Begueret J-B. Bordeaux, France . OUTLINE. Context RF Front End Specifications Circuit design Conclusion & Perspectives. OUTLINE. Context RF Front End Specifications
E N D
Reconfigurable Ultra Low Power LNA for 2.4GHz Wireless Sensor Networks TarisT., Mabrouki A., Kraïmia H., Deval Y., Begueret J-B. Bordeaux, France
OUTLINE • Context • RF Front End Specifications • Circuit design • Conclusion & Perspectives
OUTLINE • Context • RF Front End Specifications • Circuit design • Conclusion & Perspectives
Context MicroElectronicMilestones • Computers in the seventies • Low cost Si technologies • Digital processing • The Cellular phone in the 90’s • Telecommunication network • RF circuits and systems • Wireless Sensor Network & RFID in the early 21th century • Gate reduction • Energy (scavenging, management…)
Context Wireless Sensor Network Configuration • Reduce the node power consumption… Wireless Sensor Network B A RF link 1 C RF link 2 …by matching the RF link budget to the communication scenario
OUTLINE • Context • RF Front End Specifications • Circuit design • Conclusion & Perspectives
RF Front End Specifications Node Top-down • Node at system level Memory RF Link Budget 2 µController ADC Sensor RF Tx/Rx • Node Rx at system level RF Link Budget 1 NFRx2 Power unit PRx RFFE Demodulator NFRx1 SNRdem NFRx = PRx - SNRdem+(174-10 log BW)
RF Front End Specifications RF Link Parameters BFSK modulation Channel Characteristic Attenuation L(R) PTx PRx BER~10-3 distance R node B node A SNRdem~10 dB BW = 10MHz NFRx= PRx– SNRdem+ (174-10 log BW) PRx = PTx - Lpath(R) 2.4 GHz ISM Band
RF Front End Specifications RFFE and NF specification • Node Rx at system level NFRx2 PRx RFFE Demodulator NFRx1 SNRdem • RFFE and system specification Mixer LNA NFRx2 LO NFRx1 NFRxismainlysupported by the LNA !
RF Front End Specifications RFFE and NF specification • Node Rx at system level NFRx2 PRx RFFE Demodulator NFRx1 SNRdem • RFFE and system specification Mixer LNA NFRx2 LO NFRx1 NFRxismainlysupported by the LNA !
OUTLINE • Context • RF Front End Specifications • Circuit design • Conclusion & Perspectives
Circuit Design Low Power RF Metric Optimized biasing! • Optimization of RF performances versus power consumption in the transistor… RF skills Current consumption …by maximizing the FOMLP Vth ~ Vth+ 100mV
Circuit Design Amplifier Configurations • To compensate for the low gm in MI region… Id Id Id MP MP MP bias OR ? RF RF RF out in out out MN MN MN in in Single Transistor Stage (STS) Self Biased Inverter (SBI) …active load configurations are preferred!
Circuit Design Amplifier Configuration • Comparison of the Gain BandWidth (GBW) product… 30 Self Biased Inverter (SBI) 20 Gain (dB) 10 Single Transistor Stage (STS) Frequency (Hz) 0 100G 1G 10G GBWSTS …the one of self biased inverter is the largest ! GBWSBI
Circuit Design LNA topology LNA 2.4GHz – CMOS 0.13µm 0.8V VDD Digital Control 3 VCC DAC Id Cdec Lpk 50 @ 2.4GHz Off-chip M2 Cm2 Rin/buffer RF out 50 @ 2.4GHz M3 Cm3 Lg Cl Cm1 in M1 Rpol2 Rpol1 Vpol2 Vpol1 Currentreuse with feedback buffer LNA core
Circuit Design Post Layout Performances S21 NF 900µm S11 700µm
OUTLINE • Context • RF Front End Specifications • Circuit design • Conclusion & Perspectives
Conclusion & Perspectives System Considerations • Match the radio performances with the RF link budget to reduce the power consumption of nodes in WSN • A matter of Noise Figure/Gain reconfiguration in the LNA Requirement Circuit analysis • Best tradeoff between RF skills and current consumption in MI region • Select the topology providing the largest GBW Good agreement
Conclusion & Perspectives Done Next step NFRx2 NFRx1 Last step • A mixer to be designed in MI region • Gilbert Cell with current bleeding topology Mixer LNA LO • A VCO with low power techniques • Negative resistance topology