1 / 17

The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams

The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics. Peter G. Thirolf, LMU Munich. Outline:. motivation: nucleosynthesis of heavy elements  r process path: waiting point N=126 ultra-dense laser-accelerated ion beams

vivi
Download Presentation

The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics Peter G. Thirolf, LMU Munich Outline: • motivation: nucleosynthesis of heavy elements •  r process path: waiting point N=126 • ultra-dense laser-accelerated ion beams •  novel reaction mechanism: fission-fusion • experimental requirements at ELI-NP ELI-NP Workshop, Bucharest, March 10-12, 2011

  2. r process: waiting point N=126 • r process: • - path for heavy nuclei far in ‚terra incognita‘ • - astrophysical site(s) still unknown: • core collapse SN II, neutron star merger ? Au, Pt, Ir,Os - waiting point N=126: bottleneck for nucleosynthesis of actinides - last region of r process ‘close’ to stability ELI-NP Workshop, Bucharest, March 10-12, 2011

  3. ions electrons driver laser Radiation Pressure Acceleration relativ. electrons at solid density nm foil • cold compression of electron sheet, followed by electron breakout • dipole field between electrons and ions • ions + electrons accelerated as neutral bunch (avoid Coulomb explosion) • - solid-state density: 1022 - 1023 e/cm3 • ‘classical’ bunches: 108 e/cm3  ~ 1014 x density of conventionally accelerated ion beams ELI-NP Workshop, Bucharest, March 10-12, 2011

  4. Exp. Scheme for “Fission-Fusion” Production target Reaction target 232Th: 560 nm 232Th:~ 50mm 1.2.1023 W/cm2 32 fs, 273 J, 8.5 PW ~ 1 mm Fission fragments APOLLON laser : Fusion products focus: ~ 3 mm 1.0.1022 W/cm2 32 fs, 23 J, 0.7 PW CD2: 520 nm CH2~ 70 mm beam (~ 7 MeV/u): d, C, 232Th target: p, C, 232Th 232Th + p, C → FL + FH : beam-like fission fragments d, C + 232Th → FL + FH : target-like fission fragments D. Habs, PT et al., Appl. Phys. B, in print ELI-NP Workshop, Bucharest, March 10-12, 2011

  5. FL FH Fission Stage of Reaction Scheme • fission mass distribution: 232Th: <AL> ~ 91, DAL ~ 14 amu (FWHM) DAL ~ 22 amu (10%) <ZL> ~ 37.5 (Rb,Sr) • fusion-evaporation calculations (PACE4): • (Z=35,A=102) + (Z=35, A=102): Elab= 270 MeV (E* = 65 MeV) • 190Yb (Z=70,N=126): 2.1 mb • 189Yb ( N=125): 15.8 mb • 188Yb ( N=124): 61.7 mb • 187Yb ( N=123): 55.6 mb ELI-NP Workshop, Bucharest, March 10-12, 2011

  6. Collective Stopping Power Reduction • Bethe-Bloch for individual ion: long-range collective interaction wp= plasma frequency binarycollisions kD = Debye wave number • reduction of atomic stopping power for ultra-dense ion bunches: • - plasma wavelength (~ 5 nm) « bunch length (~560 nm): •  only binary collisions contribute • - „snowplough effect“: first layers of ion bunch remove electrons • of target foil • - predominant part of bunch: screened from electrons (ne reduced)  reductionofdE/dx : avoidsiondecelerationbelow VC:  allows for thick reaction targets for fusion reactions ELI-NP Workshop, Bucharest, March 10-12, 2011

  7. Exp. Scheme for “Fission-Fusion” Production target Reaction target conventional stopping: 232Th: 560 nm 232Th:~ 50mm 1.2.1023 W/cm2 32 fs, 273 J, 8.5 PW ~ 1 mm Fission fragments APOLLON laser : Fusion products focus: ~ 3 mm 1.0.1022 W/cm2 32 fs, 23 J, 0.7 PW CH2~ 70 mm CD2: 520 nm collective stopping: Production target Reaction target 232Th: 560 nm 232Th: ~ 5 mm 1.2.1023 W/cm2 32 fs, 273 J,8.5 PW ~ 1 mm Fission fragments APOLLON laser : focus: ~ 3 mm Fusion products 1.0.1022 W/cm2 32 fs, 23 J, 0.7 PW CD2: 520 nm ELI-NP Workshop, Bucharest, March 10-12, 2011

  8. Fission-Fusion Yield / Laser Pulse laser acceleration (300 J, e~10%): normal stopping reduced stopping 232Th 1.2 . 1011 1.2 . 1011 C 1.4 . 1011 1.4 . 1011 protons 2.8 . 1011 1.8 . 1011 beam-like light fragments 3.7 . 108 1.2 . 1011 target-like light fragments 3.2 . 106 1.2 . 1011 fusion probability 1.8 . 10-4 1.8 . 10-4 FL(beam) + FL (target) neutron-rich fusion products 1.5 4 . 104 (A≈ 180-190) • laser development in progress: • diode-pumped high-power lasers: increase of repetition rate expected ELI-NP Workshop, Bucharest, March 10-12, 2011

  9. Towards N=126 Waiting Point • r process path: • - known isotopes ~15 neutrons away from r process path (Z≈ 70) 0.001 sfisfus • measure: • - masses, lifetimes, structure • - b-delayed n emission prob. Pn,n - lifetime measurements: already with ~ 10 pps • visions: • test predictions: r process • branch to long-lived (~ 109 a) • superheavies (Z≥110) •  search in nature ? • improve formation predictions • for U, Th • recycling of fission fragments • in (many) r process loops ? 0.1 x 0.5 key nuclei ELI-NP Workshop, Bucharest, March 10-12, 2011

  10. Experimental layout • characterization of reaction products • - decay spectroscopy high power short-pulse laser APOLLON detector (tape) transport system mirror target concrete shielding (gas-filled) separator ELI-NP Workshop, Bucharest, March 10-12, 2011

  11. Experimental layout • characterization of reaction products • - decay spectroscopy Penning trap mass measurements (Dm/m= 10-8) • precision mass measurements: • e.g. Penning trap high power short-pulse laser APOLLON gas stopping cell cooler/buncher mirror target concrete shielding (gas-filled) separator ELI-NP Workshop, Bucharest, March 10-12, 2011

  12. “The Way Ahead” • exploratory experiments : - staged approach with tests of crucial ingredients at existing facilities prior to operation of ELI-NP  laser ion acceleration of Th ions  collective effects of dense ion bunches (range enhancement) • requirements: • - RPA target chamber • - 232Th target development • - ion diagnostics: Thomson parabola ELI-NP Workshop, Bucharest, March 10-12, 2011

  13. Conclusions • novel laser ion acceleration (RPA): - generation of ultra-dense ion bunches - enables fission-fusion reaction mechanism •  fusion between 2 neutron-rich fission fragments • - reduction of electronic stopping ? • - may lead much closer towards N=126 r-process waiting point • ELI-NP: unique infrastructure • - superior to ‘conventional’ radioactive beam facilities • The Way Ahead: • - exploratory experiments at existing laser beams • (Thorium acceleration, collective range enhancement..) • - collaboration has to be formed ELI-NP Workshop, Bucharest, March 10-12, 2011

  14. Thanks to the Collaboration: • D. Habs (LMU, MPQ) • T. Tajima (LMU, JAEA/Kyoto) • J. Schreiber (LMU) • M. Gross (LMU) • Henig (LMU) • D. Jung (LMU) • D. Kiefer (LMU) • G. Korn (MPQ) • F. Krausz (MPQ, LMU) • J. Meyer-ter-Vehn (MPQ) • H.-C. Wu (MPQ) • X.Q. Yan (MPQ, Univ. Beijing) • B. Hegelich (LANL, LMU) • V. Liechtenstein (Kurchatov Inst., Moscow) Thank you for your attention ! ELI-NP Workshop, Bucharest, March 10-12, 2011

  15. Requirements for E1 @ ELI-NP: Floorspace layout 18 m production- separation area measurement area 12 m 12 m concrete shielding • recoil separator: • wide momentum acceptance • gas-filled ? 15 m ELI-NP Workshop, Bucharest, March 10-12, 2011

  16. Experimental Requirements @ ELI-NP Laser clean rooms 120 m E1: laser-induced nuclear reactions  “fission-fusion” experimental areas 110 m ELI-NP Workshop, Bucharest, March 10-12, 2011

  17. Cost Estimate • component cost estimate: • - laser target chamber: ~ 200 kEUR • recoil separator : ~ 5000 kEUR • tape station : ~ 150 kEUR • decay detectors : ~ 150 kEUR • buffer gas cell : ~ 300 kEUR • mass analyzer : ~ 300 kEUR • electronics, control, • data acquisition : ~ 200 kEUR total: ~ 6.3 MEUR ELI-NP Workshop, Bucharest, March 10-12, 2011

More Related