1 / 28

Top Physics Results from the ATLAS E xperiment

First Results w ith 2011 Data!!. Top Physics Results from the ATLAS E xperiment. Marina Cobal University of Udine / INFN Udine On behalf of the ATLAS Collaboration. PLHC2011 Perugia 6-10 June 2011. LHC status. 2010 / 2011 @ 7 TeV L peak = 2.1x10 32 / 1.3x10 33 cm -2 s -1

vivian
Download Presentation

Top Physics Results from the ATLAS E xperiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First Results with 2011 Data!! Top PhysicsResultsfrom the ATLAS Experiment Marina Cobal University of Udine / INFN Udine On behalf of the ATLAS Collaboration PLHC2011 Perugia 6-10 June 2011

  2. LHC status • 2010/2011 @ 7 TeV • Lpeak = 2.1x1032/1.3x1033 cm-2s-1 • ∫Ldt ~ 45 / ~736pb-1 • Pile-up: <nvtx> = 2 / 6<nvtx> • Lumi uncertainty: 3.4%/4.5% • Very high ATLAS data taking efficiency(93.7%) and fraction of good quality data from all sub-detectors 2010 ATLAS recorded 45 pb-1 2011 ATLAS recorded 736 pb-1

  3. Top quark pair production @ LHC - • stt(7 Tev LHC) = 165+11-16 pb • @ 172.5 GeV, Moch, Uwer, Langenfeld (Phys. Rev. D78 (2008) 034003, arXiv:0907.2527) = 25 x stt (Tevatron) • Few fb-1 expectedbyendof 2011 • 500k ttpairs(6 x Tevatron) - - - LHC Tevatron Dominant @ LHC: ≈80% M.Cacciari, S. Frixione private communication Nason, Dawson, Ellis, 1988

  4. Resultscovered • https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults • Top quark production cross section(35 pb-1, 2010 data) • Single leptonpretag(ATLAS-CONF-2011-023) • Single leptonbtag(ATLAS-CONF-2011-035) • Dilepton (ATLAS-CONF-2011-034) • Combination (ATLAS-CONF-2011-040) • Allhadronicchannel(ATLAS-CONF-2011-066) • Top quark properties(35 pb-1, 2010 data) • Top quark mass (ATLAS-CONF-2011-033) • Whelicity (ATLAS-CONF-2011-037) • tt+ anomalousETmiss (ATLAS-CONF-2011-036) • Searchfor FCNC top quark processes(ATLAS-CONF-2011-061) • Mass from the ttcross section(ATLAS-CONF-2011-054) • Single top (ATLAS-CONF-2011-027) • Single top t-channel (ATLAS-CONF-2011-088) • Search for ttresonances (ATLAS-CONF-2011-087) Adam Roe, Thursday 4F - V. Dao - New R. Schwienhorst - D. Cinca, Friday SF

  5. - σttsingle lepton (no b-tagging) • Fit of projective likelihood based on uncorrelated variables • Three variables chosen: • Binned maximum likelihood to 4 channels (3-jets, ≥4-jets; e,µ) Leptoncharge m + jets Leptonh m + jets exp(-8*aplanarity) m + jets uncert. ~15% • Independent from b-tagging: • Avoids related systematics, but worse S/B • Cross checked by cut&count and 1 D-c2 likelihood - σtt = 171 ± 17(stat) +20-17(syst) ± 6(lumi) pb

  6. - σttsingle lepton (b-tagging) • Multivariate method → split in 6 channels (=3,=4,≥5 jets; e/µ) • Input variables: lepton η, exp(-8*aplanarity), exp(3*HT, 3p ), b-tag weight • Profile likelihood fit extracts 16 parameters including σtt • Main systematics: • W+jets HF content (7%) • Tagger calibration (7%) - uncert. ~13% σtt = 186 ± 10(stat) +21-20(syst) ± 6(lumi) pb

  7. Single leptonanalysissummary • Complementary and consistent results obtained from various analyses with and w/o b-tag info • Baseline and complementary cross sections are in agreement within the uncertainties • Consistent with theoretical prediction (165+11-16pb) Single leptonw/o btag Single lepton with btag

  8. - σttdilepton Can also simultaneously extract: • σttbar/σZ, lumi uncertainty cancels in ratio • σttbar, σWW, σZ→ττfrom fit ETmissvsNjets • σttbar and b-tagging efficiency • Cut-based method • require 2 OS high PT leptons, 20 GeV • at least two energetic jets, 20 GeV • Fake rate and Z+jets dominating background • ee/µµ: ETmiss > 40 GeV and |mll – mZ| > 10 GeV • eµ: HT > 130 GeV • MC-assisted data-driven estimation of remaining Z+jetsbackgnd • Uncertainty from ~100% to <50% • Fake lepton rate determined in a data driven way • matrix methos) • Main systematics • Jet energy scale (5%) • Parton shower model (5%) • Fakes (4%) Z mass low ETmiss

  9. - σttdilepton Stransverse mass: generalization of mTconcept with two neutrinos • Cross-section extraction • Profile likelihood method to combine channels • Events in SR are compatible with top quarks σtt = 173 ± 22(stat) +18-16 (syst) +8-7(lumi) pb - 105 events selected, 101 ± 9 expected Data well modeled by MC+DD methods HT: sum of lepton and jet momenta Distribution after requiring 1 b-tag uncert. ~17% • Additionally requiring • b-tag improves S/B - σtt = 171 ± 22(stat) +21-16 (syst) +7-6(lumi) pb

  10. - sttcombination • Combined dilepton and single lepton channels • Single lepton with b-tag, dilepton w/o b-tag • Statistical uncertainty ~4% • Systematic uncertainty ~8% • Luminosity uncertainty ~3% stat stat+sys - σtt = 180 ± 9(stat) ± 15(syst) ± 6 (lumi) pb δσ = 10%

  11. - stt summary • stt in full hadronicchannel • Challengingmeasurement: - Measured < 261 pb @ 95% CL Expected < 314 pb @ 95% CL

  12. Top quark mass • Single lepton selection • Main aim: reduce JES systematic • Template fit to R32 = mjjb(t) / mjj(W) • Systematics: (b-)JES , ISR/FSR • Cross-checked by • kinematic fit templates • 2D templates with Jet Scaling Factor µ+jets mtop = 169.3 ± 4.0(stat) ± 4.9(syst) GeV µ+jets µ+jets

  13. - mtop from stt • Use most accurate measurement • Multivariate analysis with b-tag • Exploit dependence of stt from mtop • Assume mtopMC = mtoppole • mtop from combineduncorrelatedth. and exp. likelihood: maxdeterminesthe extractedmtoppole • fitperformed for 3 theoreticalcalculations • 13% uncertaintyon stt~ 5 GeVuncertainty on mtop • Default analysis → NNLO Langenfeld • (Phys. Rev. D80 (2009) 054009) - - mtop = 166.4+7.8-7.3GeV

  14. New Result!! 156 pb-1 Single top: t-channel • Single lepton NN analysis (check with cut&count) • Background: QCD multijet, W+jets • 22 variables • mostimportant: Mlnb by M(jet1, jet2) σt = 76+41-21pb Statistical uncertainty (17%) B-tagging (+12-9 %), JES((+23-2 %) SignalModelling (+36-20 %) • Observed (Expected) Significance: 6.2 (5.7) s

  15. Single top: Wt-channel • Wt-channel: cut-based analysis • single lepton+dilepton • SM predicts sWt = 15 pb • Combine dileptonand l+jetschannel • Include systematic uncertainty correlations • Dominant: JES, b-tag modeling, ISR/FSR, MC stat • Expected (observed) limit on σWtcorrespondsto6.3 (10.5) * σWtSM σWt < 158 pb at 95%

  16. Whelicity • Wtbstructureprobed → set limits on new physics • V-A couplingpredicts: • F0 ≈ 0.7 (long. polarization) • FR≈ 0 (RH polarization) • FL≈ 0.3 (LH polarization) • Use e+jets and µ+jets channels • Can extract directly from cosθ* or unfold to parton level and calculate asymmetry b

  17. Whelicity • V-A couplingpredicts: • F0≈0.7 (long. Polarization) • FR≈ 0 (RH polarization) • FL≈ 0.3 (LH polarization) • Wtbstructureprobed→ set limitson new physics • Use e+jets and µ+jets channels • Can extract directly from cosθ* or unfold to parton level and calculate asymmetry FL F0 FR b

  18. tt + anomalous ETmiss • Search for anomalous ETmissin ttbar (lepton+jets) events • benchmark: TT pair, TtA0 • A0 dark matter candidate • Enhanced cross-section due to spin states • Signal region: • ETmiss>80 GeV, mT>120 GeV; dilepton veto: pT > 15 GeV, tracks, loose electrons Alwall, Feng, Kumar et al.(2010) Berger, Cao (2009) Exclude MT< 275 (300) GeV For MA0< 50 (10) GeV Observed: 17 evts Expected 17.2 ± 2.6 Observed 17

  19. FCNC in decay • Look for tZqvertex (q =u,c): leptonicW/Zdecays to suppress QCD background • Cut & Count: • 3 leptons (> 25 GeV, > 20 GeV, > 15 GeV), twosameflavor and OS • 2 jets ( >30 GeV, >20 GeV), ETmiss>20 GeV Expected BR(tqZ) < 17% Observed BR(tqZ) < 12‐3+4% @ 95% CL

  20. FCNC in production • look for gqtvertex • anomalous single top production • Single leptonEvents • exactly1 b‐taggedjet • exactly1 lepton (e/μ) • Neural Network with 13 input variables+ binnedlikelihood ratio • No excessobserved: limiton σqg*BR(tWb) • Systematics: ISR, JES, HF content in W+jets Observedσqgt*BR(tWb) < 17.3 pb Expected σqgt*Br(tWb) < 17.4‐5.4+8.2 pb

  21. - New Result!! 200 pb-1 Search for high mtt • In manynew physicsmodelstop plays a special role • Narrowresonance: leptophobictopcolorZ' as benchmark model • Wide resonance: a Kaluza-Klein gluon gKK, which appears in Randall-Sundrummodels • mttfrom 3 or 4 jets, e/m, and n • DRminvariant (4 highestpTjetsconsidered, jet removediftoo far from otherobjects and hastoo high mass) • Normalizationuncertainties • W(35%), diboson (5%), QCD in e (30%) and m (50%) channels • Shapeuncertainties • b-tag (11%), JES (9%), ISR/FSR(7%) -

  22. - Search for high mtt For a narrowZ’, observed95% C.L. limitsrange from ≈38 pbto 3.2 pbfor massesfrom MZ’=500 GeVto 1300 GeV. In Randall-Sundrummodels, KK gluonswithmassesbelow 650 GeVexcludedat95% C.L.

  23. Conclusions • Top physicsin ATLAS just started. With only 35 pb-1 of data: • Cross sectionmeasurementalreadycompetitive ~10% uncertainty • Large number of measurementsalreadyperformed • New resultspresented on single top and Mttbar with 2011 data • Statisticlimitedanalysiswillsoonbecomeverycompetitive Already ≈0.7 fb-1 recorded . 1 fb-1 coming soon! • Focus to reduce impact of systematics • Improve even further detector understanding • Use advanced analysis techniques • 2011 year of precision → more top measurements and maybe discoveries! • Cross sections in various channels, differential cross sections and top mass • Charge asymmetry, spin correlation, top charge • t’t’ , same sign top, W’ search in single top

  24. Single top: t-channel To be updated • Single lepton cut based (check with likelihood) • 1 lepton, 1 b-jet, 1 light jet, ET mi ss>25 GeV • Background: QCD multijet, W+jets • Final cut M t o p ∈ [130, 210] GeV, h | (u-jet)| > 2.5 • Likelihoodratio using: cosDf(lep,Etmiss), DR(bjet,lep), h(untagged jet), reconstructedMtop σt = 53+27-24(stat) +38-27(syst) = 53 +46-36pb • Significance: 1.6

  25. Search for high Mttbar To be updated • Search for massive neutralbosonsinto a ttbarpair • leptophobictopcolorZ' as benchmark model (hepph: 9911288) • Search for anomaloushigh mass tt+ X production → • Quantum Black Holesas benchmark model (JHEP 0805(2008)003) • M reconstructionusing3 differentmethods. • DRminvariant (4 highestpTjetsconsidered, jet removediftoo far from otherobjects and hastoo high mass). M build from lepton, nand ¾ remainingjets • Mainsystematics: JES, JER, btagging • Bayesianapproachusingbinnedlikelihood to the Mttbar • No evidence for resonancefound Exclude MQBH< 2.35 TeV@ 95% CL Observed 95% CL limitfrom 55(2.2)pb at M=500(2000) GeV

  26. The Top quark: from theory… • Weakisospin partner of b-quark • Spin ½ fermion, charge 2/3 • Produced in pairs via qqannihilationor gg fusion • Lifetime~ 5 . 10-25 s • Decays (BR ~ 100%) in Wb Most precise predictions of production cross sectionby approximateNNLO calculations, precisionof 6% to 9% : For Mtop= 172.5 GeV/c2, tt~xxx

  27. …to experiment • Mass known with a precision < 1% • Top properties (charge, width, …) deeplyinvestigated • Single top identified • Top samplesnowland for searches for new physics Discoveryatthe Tevatron 1995 (67 pb-1) 2011 ( > 5 fb-1 analyzed), 10 fb-1by the end of RunII)

  28. Top decay

More Related