1 / 25

Estadística social fundamental

Estadística social fundamental. Facultad de ciencias. ADMINISTRATIVO - MONITORES. Cristian Andrés González:  Lunes de 9am a 11am en el salón 404-206 Camila Grass:  Martes y jueves de 9am a 11am en el salón 405-312 Leidy Johana Angel: Miércoles de 11am a 1pm en el salón 404-206

vlora
Download Presentation

Estadística social fundamental

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Estadística social fundamental Facultad de ciencias

  2. ADMINISTRATIVO - MONITORES • Cristian Andrés González:  • Lunes de 9am a 11am en el salón 404-206 • Camila Grass:  • Martes y jueves de 9am a 11am en el salón 405-312 • Leidy Johana Angel: • Miércoles de 11am a 1pm en el salón 404-206 • Julian López: • Miércoles de 1pm a 3 pm en el salón 404-206 • Luisa Fernanda Parra:    • Martes y jueves de 6pm a 8pm en el salón 405-313

  3. ¿Preguntas? • Ya poseemos el 30% de las nota final de esta clase. • Para esta clase, ¿Qué deben leer? • Ritchey, Estadística para las ciencias sociales Cap. 6 y7 • Blanco, Probabilidad, Cap. 1 • Haber, Runyon. Estadística General. Cap 11 • El taller 3 es un quiz, el taller solo es para prepararlos. • ¿ Hacemos un horario de atención extra antes del quiz?

  4. SEGUNDA PARTE DEL CURSO PROBABILIDAD CONDICIONAL

  5. ¿Qué significa que dos eventos sean disyuntos?

  6. LEYES DE KOLMOGOROV • TODO ESPACIO MUESTRAL DEBE CUMPLIR ESTAS CONDICIONES • Definiendo • P () = 1 • P ( • Siendo , … • …

  7. LEYES DE KOLMOGOROV • TODO ESPACIO MUESTRAL DEBE CUMPLIR ESTAS CONDICIONES • Definiendo • P () = 1 • P ( • Siendo , … • … Y SI NO SON DISYUNTOS ???

  8. INTERSECCIÓN PROBABILIDAD • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 25. • Ejemplo 1: Se lanzan dos dados corrientes una vez. • Definamos: • ¿Cuál es la probabilidad de que al menos uno de los resultados sea 6 y que los resultados sean diferentes?

  9. INTERSECCIÓN PROBABILIDAD • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 25. • Ejemplo 2: Una urna contiene 12 bolas de las cuales 8 son blancas. Se extrae una muestra de tamaño 4 sin reemplazo y en orden. • Sea, • ¿ • EJEMPLO TABLERO

  10. PROBABILIDAD CONDICIONAL • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 24. • Probabilidad Condicional: Teniendo un experimento aleatorio. Si A y B son eventos y pertenecen al espacio muestral. Entonces definimos la probabilidad condicional como:

  11. PROBABILIDAD CONDICIONAL • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 24. • Probabilidad Condicional: Teniendo un experimento aleatorio. Si A y B son eventos y pertenecen al espacio muestral. Entonces definimos la probabilidad condicional como: • ¿PARA QUÉ NOS SIRVE? • Nos ayuda a calcular la probabilidad del evento B, dado que el evento A pasará seguramente.

  12. PROBABILIDAD CONDICIONAL • ¿PARA QUÉ NOS SIRVE? • Nos ayuda a calcular la probabilidad del evento B, dado que el evento A pasará seguramente. • EJEMPLO: • Evento seguro: Su amigo saco mas de 4 en el parcial de ESF. • Evento No seguro: La nota suya en el parcial • Probabilidad Condicional: ¿ Cuál es la probabilidad de que usted saque más de 4 en el parcial teniendo en cuenta que se copiaron?

  13. PROBABILIDAD CONDICIONAL • ¿PARA QUÉ NOS SIRVE? • Nos ayuda a calcular la probabilidad del evento B, dado que el evento A pasará seguramente. • EJEMPLO: • Evento seguro: Hoy llovió a cántaros. • Evento No seguro: La probabilidad de lluvia el día de mañana • Probabilidad Condicional: ¿ Cuál es la probabilidad de que llueva dado que el evento de que llueva hoy con el evento de que llueva mañana no son independientes?

  14. PROBABILIDAD CONDICIONAL • ¿PARA QUÉ NOS SIRVE? • Nos ayuda a calcular la probabilidad del evento B, dado que el evento A pasará seguramente. • EJEMPLO: • Evento seguro: Su nueva novi@ le puso los cachos al ex. • Evento No seguro: Le van a poner los cachos a Usted. • Probabilidad Condicional: ¿ Cuál es la probabilidad de que le pongan los cachos a Usted teniendo en cuenta que la conducta de infidelidad se mantiene a través del tiempo?

  15. ¿CUÁL ES LA DIFERENCIA ENTRE PROBABILIDAD CONDICIONAL E INTERSECCIÓN?

  16. TEOREMA DE LA PROBABILIDAD TOTAL Y REGLA DE BAYES • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 24. • TEOREMA DE PROBABILIDAD TOTAL • REGLA DE BAYES Probar

  17. EJEMPLOS • Ejemplo 1: Se tira un dado y sabemos que la probabilidad de que salga un 2 es 1/6 (probabilidad a priori). Si incorporamos nueva información (por ejemplo, alguien nos dice que el resultado ha sido un número par) entonces la probabilidad de que el resultado sea el 2 ya no es 1/6. • Ejemplo 2: En un estudio sanitario se ha llegado a la conclusión de que la probabilidad de que una persona sufra problemas coronarios (suceso B) es el 0,10 (probabilidad a priori). • Además, la probabilidad de que una persona sufra problemas de obesidad (suceso A) es el 0,25 y la probabilidad de que una persona sufra a la vez problemas de obesidad y coronarios (suceso intersección de A y B) es del 0,05. • Calcular la probabilidad de que una persona sufra problemas coronarios si está obesa (probabilidad condicionada P(B/A)).

  18. EJEMPLOS • Ejemplo 3: probabilidad de que al tirar un dado salga el número 2, condicionada a que haya salido un número impar. • Ejemplo 4: Una pareja de recién casa dos ha decidido formar una familia de solo tres hijos, a. determine la probabilidad de que tenga puros hijos varones, b. ¿cuál es la probabilidad de que tenga como máximo un hijo varón, c. ¿cuál es la probabilidad de que su segundo hijo sea varón, d. Si esta familia tiene por lo menos una hija, ¿cuál es la probabilidad de que el segundo hijo sea varón?

  19. EJEMPLOS • Ejemplo 5: Según las estadísticas, la probabilidad de que un auto que llega a cierta gasolinera cargue gasolina es de 0.79, mientras que la probabilidad de que ponga aceite al motor es de 0.11 y la probabilidad de que ponga gasolina y aceite al motor es de 0.06, a. Sí un auto carga gasolina, ¿cuál es la probabilidad de que ponga aceite?, b. Sí un auto pone aceite al motor, ¿cuál es la probabilidad de que ponga gasolina? • Ejemplo 6: Una mujer es portadora de la enfermedad de Duchenne ¿Cuál es la probabilidad de que su próximo hijo tenga la enfermedad?

  20. EJEMPLOS • Ejemplo 7: Se sabe por estudios previos que el 0,1% de la población tiene problemas vasculares. Un estudio sobre individuos con problemas vasculares revela que el 20% de ellos son placas de ateroma. Si el 10% de los individuos con placas de ateroma y problemas vasculares están expuestos a muerte súbita por desprendimiento de trombos ¿qué probabilidad tiene un individuo cualquiera de estar expuesto a muerte súbita por desprendimiento de trombos de una placa de ateroma y problemas vasculares?

  21. EJEMPLOS • Ejemplo 8: En una ciudad se llevan a cabo pruebas para detectar cierta enfermedad. Supóngase que el 1% de las personas sanas son registradas como enfermas, que el 0.1% de la población está realmente enferma y que el 90% de los enfermos son reportados como tales. Se desea calcular la probabilidad de que una persona, seleccionada al azar y reportada como enferma, esté realmente enferma.

  22. PROBABILIDAD INDEPENDIENTE • BIBLIOGRAFÍA: Blanco, Liliana. Probabilidad. • Capítulo 1,Página 32. • Probabilidad Condicional: Dos eventos A y B son independientes, si y sólo si: • ¿PARA QUÉ NOS SIRVE?

  23. TALLER

  24. ¿PREGUNTAS?

  25. Próxima clase (semana)

More Related