240 likes | 417 Views
Distributed Video Coding with Unsupervised Learning of Motion Estimation. Young Min Kim Stephanie Kwan Karen Zhu. EE 398B Project. Outline. Distributed Source Coding Wyner-Ziv Video Coder Distributed Stereo Image Coder Lossless Pixel Domain Distributed Video Coding
E N D
Distributed Video Coding with Unsupervised Learning of Motion Estimation Young Min Kim Stephanie Kwan Karen Zhu EE 398B Project
Outline • Distributed Source Coding • Wyner-Ziv Video Coder • Distributed Stereo Image Coder • Lossless Pixel Domain Distributed Video Coding • Lossy Pixel Domain Distributed Video Coding • Simulation Results • Conclusion
Distributed Video Coding • Conventional Video Coding • High complexity encoder • Low complexity decoder • Distributed Video Coding • Low complexity encoder • High complexity decoder
Slepian-Wolf Theorem on Lossless Distributed Coding Separate Encoding Joint Decoding (X,Y) Decoder Encoder 1 X (X,Y) Y Encoder 2 Slepian-Wolf Theorem :
Wyner-Ziv Lossy Coding Wyner-Ziv Coding Separate Encoder Joint Decoder X X’ Y Side Information available at Encoder Joint Encoder Joint Decoder X X’ Y Y Wyner-Ziv Coding Performance = 0
Wyner-Ziv Video Coder Interframe Decoded Intraframe Encoded Decoded WZ Frames WZ Frames Slepian-Wolf Coder Quantization q Reconstruction Turbo Encoder Turbo Decoder S’ S Side Information Ŝ Request bits Interpolation or Extrapolation Conventional Intraframe Encoder Conventional Intraframe Decoder K K’ Decoded Key Frames Key Frames
Distributed Compression of Stereo Images with Unsupervised Learning Request bits X LDPC Encoder S LDPC Decoder (M-step) θ Termination Threshold X ψ Disparity Estimator (E-step) Y
Lossless Distributed Video Coder with Unsupervised Learning of Motion Request bits LDPC Encoder LDPC Decoder (M-step) θ Termination Threshold X X Decoded Frames ψ Motion Estimator (E-step) Side Information Y Previous Reconstructed Frame
Lossless Distributed Video Coder with Unsupervised Learning of Motion Request bits LDPC Encoder LDPC Decoder (M-step) θ Termination Threshold X X Decoded Frames ψ Motion Estimator (E-step) Side Information Y Previous Reconstructed Frame
Motion Vector Prediction (MVP) • Change initial probability to the motion vector found from previous two frames B
Lossy Distributed Video Coder Intraframe Encoded Interframe Decoded Request bits Reconstructed Frames LDPC Encoder LDPC Decoder (M-step) Termination Threshold Q Q-1 S’ S Non-Key Frames θ ψ Side Information Motion Estimator (E-step) Previous Reconstructed Frame Q Conventional Intraframe Encoder Conventional Intraframe Decoder K’ K Decoded Key Frames Key Frames
Comparison Schemes for Lossless Coding • Proposed Schemes • 2D motion estimation (2DME) • 2D motion estimation + motion vector prediction (MVP) • Reference Schemes • H(X|Y) – Slepian-Wolf bound • Motion estimation with motion oracle • No motion estimation • Intra-coding
Comparison Schemes for Lossy Coding • Proposed Schemes (2DME & MVP) • 7 bits coder • 6 bits coder • 5 bits coder • Reference Schemes • H(X|Y) for given quantization level • Motion estimation with motion oracle • No motion estimation • Intra-coding
Simulation Setting • Foreman 65-95, Carphone 180-210 • 8 bitplanes for lossless, 5, 6, 7 bitplanes for lossy • Frame size 72x88, Block size 8x8 • Motion vector between -5 and 5 • Initial probability • 2DME - 0.75 at (0,0) • MVP - 0.75 at previous motion vector
Conclusion • Our coders achieve rates close to oracle • Better than no estimation • Motion estimation is more effective for more bits and considerable motion • Better than intra-coding for lossless case and most of lossy cases