1 / 35

Sci-Fi Sound

8. Reporter: Filip Landek. Sci-Fi Sound. Table of contents. Sci – Fi Sound – Table of contents. Problem description :. „ Tapping a helical spring can make a sound like a “ laser shot ” in a science-fiction movie. ” „ Investigate and explain this phenomenon. ”.

wagee
Download Presentation

Sci-Fi Sound

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8. Reporter: Filip Landek Sci-Fi Sound

  2. Table of contents Sci – FiSound– Table of contents

  3. Problem description: „Tapping a helical spring can make a sound like a “laser shot” in a science-fiction movie.” „Investigate and explain this phenomenon.” Sci – FiSound– Problem description

  4. Table of contents Sci – FiSound– Table of contents

  5. Bendingfreevibrations of Slinkywire Longthin beamfreebendingvibrations Euler-Bernoullitheory = 0 bending in space bending in time E – Young’s modulus ρ – density (g/cm3) I – moment of inertia S – cross-sectionarea Sci – FiSound– Theoretical model

  6. Equation of acousticdispersion Dispersionrelation: bendingwaveangularvelocityn  wavenumber kn n = 0, 1, 2, …,  ω (rad/s) ω – angularvelocity (rad/s) k – wavenumber (rad/m) E – Young’s modulus ρ – materialdensity (g/cm3) I – moment of inertia S – beamcross-sectionarea k (rad/m) Sci – FiSound– Theoretical model

  7. ω (rad/s) k (rad/m) v – phasevelocity f – frequency λ – wavelenght ω – angularfrequency k – wavenumber Propagation of waves in differentmediums Sci – FiSound– Theoretical model

  8. Propagation of waves in differentmediums Dispersivemedium Non-dispersivemedium A(mm) A(mm) Lenght (m) Lenght (m) Sci – FiSound– Theoretical model

  9. Initialdisturbanceof Slinkywire  = D´ - bendingstiffness m´ - massperunitlenght t – time a – geometrical parametar E – Young’s modulus I – moment of inertia ρ – density x - displacement w(x,t) propagatingof initialdisplacementw(x,t) -x x=0 +x Sci – FiSound– Theoretical model

  10. Hypotheses • DispersivemediumHigherfrequenciestravelfasterObservable time delaytd 2. Time delaytdwill be bigger for:LongerSlinkySubsequentechoes 3. Shape of the Slinky is irrelevant Sci – FiSound– Theoretical model

  11. Table of contents Sci – FiSound– Table of contents

  12. Experimentsetup Polyurethanefoam (soundisolation) Metal stand Microphone Pendulum Slinkyspring Metal base Sci – FiSound– Experimentsetup

  13. Experimentsetup UnstrechedSlinkyspring Slinkystand Sci – FiSound– Experimentsetup

  14. Experimentalmeasurements • Qualitativeanalysis: • Case 1: Slinky (48 coils) • a) Clampedend – Clampedend • b) Clampedend – Freeend • Case 2: Roundsteelwire (19 m) • a) Straightwire • b) Hand-madehelicalspring • Quantitativeanalysis: • a) Dependencyfrequency time delay • b) Dependency time delay echo • c) Dependency time delay number of coils Sci – FiSound– Experimentsetup

  15. Table of contents Sci – FiSound– Table of contents

  16. Quantitativeexperimentalproof of acousticdispersion Frequency (Hz) Time (s) Soundintensity (dB) Time (s) Sci – FiSound– Analysis of experimentalresults

  17. Analysisofexperimentalresults 1 a) The anatomy of typicalsoundrecordedonSlinkyclamped at bothends 1 II III IV Phase II Bendingwavespropagation Echoesmodulatedwave Dampning Acousticdisperision Phase IV Silencephase Phase III Onlylowfrequenciesremain Phase 1 Intialdisturbance Sci – FiSound– Analysis of experimentalresults

  18. Analysisofexperimentalresults 1 b) The anatomy of typicalsoundrecorded after hitsfreehangingSlinky 1 VII II IV V III VI Phase II Bendingwavespropagation Echoesmodulatedwave Dampning Acousticdisperision Phases IV & VII Silencephase Phases III & V & VI Secondary (internal) disturbances Phase 1 Intialdisturbance Sci – FiSound– Analysis of experimentalresults

  19. 2 b) Roundwiremadeinto a helicalspring • Soundcomparison 2 a) Straightroundwire Frequency (Hz) Frequency (Hz) Time (s) Time (s) Soundintensity (dB) Soundintensity (dB) Time (s) Time (s) Sci – FiSound– Analysis of experimentalresults

  20. Dependence of time delay on frequency (Clamped-ClampedSlinky with 80 coils) td – time delay LSlinky – lenght of the Slinkywire vf – velocity of a frequency Sci – FiSound– Analysis of experimentalresults

  21. Time delaybetweenhigher and lowerfrequencies in echoes td – time delay s – distance a wavehastravelled vf – velocity of a frequency ne – number of echo Sci – FiSound– Analysis of experimentalresults

  22. Time delaybetweenhigher and lowerfrequencies in echoes Frequency (Hz) Time (s) Sci – FiSound– Analysis of experimentalresults

  23. Dependency of frequencydelayon the number of coils Sci – FiSound– Analysis of experimentalresults

  24. Table of contents Sci – FiSound– Table of contents

  25. Conclusions Theoretical model: • Free flexural vibrations of a long thin beam (Euler-Bernoullitheory) • Propagation of initial disturbance • Acoustic dispersion Experimental results: • Qualitative confirmation of the theory • Delay timebetween higher and lower frequencies • Quantitative analysis close congruence to the computer simulation • Dependency time delay  no. of coilslinear Sci – FiSound– Conclusions and references

  26. References [1] P. Gash: Fundamental Slinky Oscillation Frequency using a Center-of-Mass Model [2] V. Henč-Bartolić, P.Kulušić: Waves and optics, School book, Zagreb, 3rd edition (in Croatian), 2004 [3] A. Nilsson,B. Liu: Vibro-Acoustics, Vol.1, Springer-Verlag GmbH, Berlin Heidelberg, 2015 [4] F. S. Crafword: Slinky whistlers, Am. J. Phys. 55(2), February 1987, p.130-134 [5] F. S. Crafword: Waves, Berkeley Physics Course, Vol.3, Berkely, 1968 [6] W. C. Elmore, M.A. Heald: Physicsofwaves, McGraw-Hill Book Company, New York, [7] J. G. Guyader: Vibration in continuous media, ISTE Ltd, London, 2002 [8] G. C. King: Vibrationsandwaves, John Wiley & Sons Ltd, London, 2009 [9] Th. D. Rossing,N. H., Fletcher: Principles of vibration and sounds, Springer-Verlag New York, lnc., 2004 [10] L.E. Kinsle et.all: Fundamentals of Acoustics,4th ed., John Willey & Sons, Inc, New York, 2000 [11] M. Géradin, D.J. Rixen: Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed., John Wiley & Sons, Ltd, Chichester,2015 [12] C.Y. Wang , C.M. Wang: StructuralVibration- Exact Solutions forStrings, Membranes,Beams, and Plates, CRC PressTaylor & FrancisGroup, Boca Raton, 2014 [13] A. Brandt: Noise and vibration analysis : signal analysis and experimental procedures, John Wiley & Sons Ltd, Chichester, 2011 [14]F. S. Crawford, Jr. : Waves – Berkeley PhysicsCourseVolume 3,EducationDevelopment Centre, 1965 [15] L. E. Kinsler, A. R. Frey, A. B. Coppens, and A. V. Sanders, Fundamentals of Acoustics, John Wiley NewYork, 2000 Sci – FiSound– Conclusions and references

  27. Thankyou for yourattention!

  28. FreehangingSlinkyparametars Coildisplacement = Centre of mass

  29. Waveequationderivation = 0 1) II)

  30. Ad.1. For lowfrequencyvibration, whenthethickness(h) ofbeam’s cross-section is smallerthanthevibrationswavelengthn (e.g. h = 0.0025 m  kn < 420) or thedispersionrelationandthephasevelocityrelationhavethefolowingforms [3,4,7]: n = 0, 1, 2, …,  rS… the radius of gyrationofbeamcross-section (m) cS… thephasevelocityof a particularpointin a beammaterial (m/s) kn … thewavenumberofnthbendingwave I … therotationalinertia moment of a beam’s cross-sectionsurface S … areaof a beamcross-sectionsurface (m2) n… thentheigencircularfrequencyof a bendingbeam(rad/s) Lowfrequencybendingmovementof a beamcross-sections [7]

  31. Bending at high and lowfrequencies Lowfrequencyvibrations Highfrequencyvibrations ω – angularfrequency E – Young’s modulus ρ – density I – moment of inertia S – cross-sectionarea k - wavenumber

  32. Ad. 2. For highfrequencywaves, thebeamdeflection is completelydeterminedbytransversalandlongitudinalwavesandthedispersionandphasevelocityrelationsshowednondispersivebehaviourofthebeamcross-section [11]. or n = 0, 1, 2, …,  Due to dispersioneffectthelowerfrequencies had beenrecorded, andheard, withdelayed time afterhighfrequencies. Highfrequencytransverseandquasi-longitudinalmovementof a beamcross-sections [3,7]

  33. Dependency of frequencydelayon the number of coils Sci – FiSound– Analysis of experimentalresults

  34. Mathematicallymodellingofwave damping andemittedsound  .. thewavelossfactor In the acoustic consideration the Slinky wire is modeled as continuouslinesoundsourceundertransversaloscillations. Each segment ofline (x) is anunbaffledsimplesourcewhichgeneratethe increment of sound pressurepressurelevel (SPL) in theair [10]. exp p(r,,t) … soundpressure (Pa); j = U0,n … the amplitude ofthewavevelocity 0 … thedensityofair (1.2 kg/m3) ca … thevelocityofsoundinair (343 m/s) The far field acoustic field at point p(r,,t) produced by line source of length L and radius a[10] For bothmodeledcasesthe time functiongn(t) is buildedfrom a harmonicandvanishingwavesubfunctions [3]:

More Related