350 likes | 371 Views
Explore the intriguing sound effect created by tapping a helical spring akin to a "laser shot" frequently heard in sci-fi films. Investigate and elucidate this phenomenon using scientific theories and experimental setups to understand the acoustic dispersion and wave propagation. Theoretical models, hypotheses, experimental measurements, and quantitative analysis provide valuable insights into the behavior of sound waves in different mediums. Conclusions drawn from the study reveal a deep connection between the theoretical framework and practical observations.
E N D
8. Reporter: Filip Landek Sci-Fi Sound
Table of contents Sci – FiSound– Table of contents
Problem description: „Tapping a helical spring can make a sound like a “laser shot” in a science-fiction movie.” „Investigate and explain this phenomenon.” Sci – FiSound– Problem description
Table of contents Sci – FiSound– Table of contents
Bendingfreevibrations of Slinkywire Longthin beamfreebendingvibrations Euler-Bernoullitheory = 0 bending in space bending in time E – Young’s modulus ρ – density (g/cm3) I – moment of inertia S – cross-sectionarea Sci – FiSound– Theoretical model
Equation of acousticdispersion Dispersionrelation: bendingwaveangularvelocityn wavenumber kn n = 0, 1, 2, …, ω (rad/s) ω – angularvelocity (rad/s) k – wavenumber (rad/m) E – Young’s modulus ρ – materialdensity (g/cm3) I – moment of inertia S – beamcross-sectionarea k (rad/m) Sci – FiSound– Theoretical model
ω (rad/s) k (rad/m) v – phasevelocity f – frequency λ – wavelenght ω – angularfrequency k – wavenumber Propagation of waves in differentmediums Sci – FiSound– Theoretical model
Propagation of waves in differentmediums Dispersivemedium Non-dispersivemedium A(mm) A(mm) Lenght (m) Lenght (m) Sci – FiSound– Theoretical model
Initialdisturbanceof Slinkywire = D´ - bendingstiffness m´ - massperunitlenght t – time a – geometrical parametar E – Young’s modulus I – moment of inertia ρ – density x - displacement w(x,t) propagatingof initialdisplacementw(x,t) -x x=0 +x Sci – FiSound– Theoretical model
Hypotheses • DispersivemediumHigherfrequenciestravelfasterObservable time delaytd 2. Time delaytdwill be bigger for:LongerSlinkySubsequentechoes 3. Shape of the Slinky is irrelevant Sci – FiSound– Theoretical model
Table of contents Sci – FiSound– Table of contents
Experimentsetup Polyurethanefoam (soundisolation) Metal stand Microphone Pendulum Slinkyspring Metal base Sci – FiSound– Experimentsetup
Experimentsetup UnstrechedSlinkyspring Slinkystand Sci – FiSound– Experimentsetup
Experimentalmeasurements • Qualitativeanalysis: • Case 1: Slinky (48 coils) • a) Clampedend – Clampedend • b) Clampedend – Freeend • Case 2: Roundsteelwire (19 m) • a) Straightwire • b) Hand-madehelicalspring • Quantitativeanalysis: • a) Dependencyfrequency time delay • b) Dependency time delay echo • c) Dependency time delay number of coils Sci – FiSound– Experimentsetup
Table of contents Sci – FiSound– Table of contents
Quantitativeexperimentalproof of acousticdispersion Frequency (Hz) Time (s) Soundintensity (dB) Time (s) Sci – FiSound– Analysis of experimentalresults
Analysisofexperimentalresults 1 a) The anatomy of typicalsoundrecordedonSlinkyclamped at bothends 1 II III IV Phase II Bendingwavespropagation Echoesmodulatedwave Dampning Acousticdisperision Phase IV Silencephase Phase III Onlylowfrequenciesremain Phase 1 Intialdisturbance Sci – FiSound– Analysis of experimentalresults
Analysisofexperimentalresults 1 b) The anatomy of typicalsoundrecorded after hitsfreehangingSlinky 1 VII II IV V III VI Phase II Bendingwavespropagation Echoesmodulatedwave Dampning Acousticdisperision Phases IV & VII Silencephase Phases III & V & VI Secondary (internal) disturbances Phase 1 Intialdisturbance Sci – FiSound– Analysis of experimentalresults
2 b) Roundwiremadeinto a helicalspring • Soundcomparison 2 a) Straightroundwire Frequency (Hz) Frequency (Hz) Time (s) Time (s) Soundintensity (dB) Soundintensity (dB) Time (s) Time (s) Sci – FiSound– Analysis of experimentalresults
Dependence of time delay on frequency (Clamped-ClampedSlinky with 80 coils) td – time delay LSlinky – lenght of the Slinkywire vf – velocity of a frequency Sci – FiSound– Analysis of experimentalresults
Time delaybetweenhigher and lowerfrequencies in echoes td – time delay s – distance a wavehastravelled vf – velocity of a frequency ne – number of echo Sci – FiSound– Analysis of experimentalresults
Time delaybetweenhigher and lowerfrequencies in echoes Frequency (Hz) Time (s) Sci – FiSound– Analysis of experimentalresults
Dependency of frequencydelayon the number of coils Sci – FiSound– Analysis of experimentalresults
Table of contents Sci – FiSound– Table of contents
Conclusions Theoretical model: • Free flexural vibrations of a long thin beam (Euler-Bernoullitheory) • Propagation of initial disturbance • Acoustic dispersion Experimental results: • Qualitative confirmation of the theory • Delay timebetween higher and lower frequencies • Quantitative analysis close congruence to the computer simulation • Dependency time delay no. of coilslinear Sci – FiSound– Conclusions and references
References [1] P. Gash: Fundamental Slinky Oscillation Frequency using a Center-of-Mass Model [2] V. Henč-Bartolić, P.Kulušić: Waves and optics, School book, Zagreb, 3rd edition (in Croatian), 2004 [3] A. Nilsson,B. Liu: Vibro-Acoustics, Vol.1, Springer-Verlag GmbH, Berlin Heidelberg, 2015 [4] F. S. Crafword: Slinky whistlers, Am. J. Phys. 55(2), February 1987, p.130-134 [5] F. S. Crafword: Waves, Berkeley Physics Course, Vol.3, Berkely, 1968 [6] W. C. Elmore, M.A. Heald: Physicsofwaves, McGraw-Hill Book Company, New York, [7] J. G. Guyader: Vibration in continuous media, ISTE Ltd, London, 2002 [8] G. C. King: Vibrationsandwaves, John Wiley & Sons Ltd, London, 2009 [9] Th. D. Rossing,N. H., Fletcher: Principles of vibration and sounds, Springer-Verlag New York, lnc., 2004 [10] L.E. Kinsle et.all: Fundamentals of Acoustics,4th ed., John Willey & Sons, Inc, New York, 2000 [11] M. Géradin, D.J. Rixen: Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed., John Wiley & Sons, Ltd, Chichester,2015 [12] C.Y. Wang , C.M. Wang: StructuralVibration- Exact Solutions forStrings, Membranes,Beams, and Plates, CRC PressTaylor & FrancisGroup, Boca Raton, 2014 [13] A. Brandt: Noise and vibration analysis : signal analysis and experimental procedures, John Wiley & Sons Ltd, Chichester, 2011 [14]F. S. Crawford, Jr. : Waves – Berkeley PhysicsCourseVolume 3,EducationDevelopment Centre, 1965 [15] L. E. Kinsler, A. R. Frey, A. B. Coppens, and A. V. Sanders, Fundamentals of Acoustics, John Wiley NewYork, 2000 Sci – FiSound– Conclusions and references
FreehangingSlinkyparametars Coildisplacement = Centre of mass
Waveequationderivation = 0 1) II)
Ad.1. For lowfrequencyvibration, whenthethickness(h) ofbeam’s cross-section is smallerthanthevibrationswavelengthn (e.g. h = 0.0025 m kn < 420) or thedispersionrelationandthephasevelocityrelationhavethefolowingforms [3,4,7]: n = 0, 1, 2, …, rS… the radius of gyrationofbeamcross-section (m) cS… thephasevelocityof a particularpointin a beammaterial (m/s) kn … thewavenumberofnthbendingwave I … therotationalinertia moment of a beam’s cross-sectionsurface S … areaof a beamcross-sectionsurface (m2) n… thentheigencircularfrequencyof a bendingbeam(rad/s) Lowfrequencybendingmovementof a beamcross-sections [7]
Bending at high and lowfrequencies Lowfrequencyvibrations Highfrequencyvibrations ω – angularfrequency E – Young’s modulus ρ – density I – moment of inertia S – cross-sectionarea k - wavenumber
Ad. 2. For highfrequencywaves, thebeamdeflection is completelydeterminedbytransversalandlongitudinalwavesandthedispersionandphasevelocityrelationsshowednondispersivebehaviourofthebeamcross-section [11]. or n = 0, 1, 2, …, Due to dispersioneffectthelowerfrequencies had beenrecorded, andheard, withdelayed time afterhighfrequencies. Highfrequencytransverseandquasi-longitudinalmovementof a beamcross-sections [3,7]
Dependency of frequencydelayon the number of coils Sci – FiSound– Analysis of experimentalresults
Mathematicallymodellingofwave damping andemittedsound .. thewavelossfactor In the acoustic consideration the Slinky wire is modeled as continuouslinesoundsourceundertransversaloscillations. Each segment ofline (x) is anunbaffledsimplesourcewhichgeneratethe increment of sound pressurepressurelevel (SPL) in theair [10]. exp p(r,,t) … soundpressure (Pa); j = U0,n … the amplitude ofthewavevelocity 0 … thedensityofair (1.2 kg/m3) ca … thevelocityofsoundinair (343 m/s) The far field acoustic field at point p(r,,t) produced by line source of length L and radius a[10] For bothmodeledcasesthe time functiongn(t) is buildedfrom a harmonicandvanishingwavesubfunctions [3]: