90 likes | 107 Views
Explore neutron emission, diagnostics, spectrometer design, techniques & challenges in fusion energy research. Discover standard neutron spectroscopy techniques and advancements.
E N D
Neutron spectrometry in fusion energy research Göran Ericsson, Erik Andersson Sundén M.Cecconello, S.Conroy, M.Gatu Johnson, L.Giacomelli, C.Hellesen, A.Hjalmarsson, J.Källne, E.Ronchi, H.Sjöstrand, M.Weiszflog Uppsala University G.Gorini, M.Tardocchi, J.Sousa, A.Murari, S.Popovichev Milano-Bicocca, IST, JET • Outline: • Neutron emission in fusion experiments • Role of diagnostics, measurement conditions • Spectrometer design and techniques • The ToF technique; TOFOR • Thin-foil proton recoil technique; MPRu • Outlook and Conclusions Frontiers … Rome, 2009 1 See also poster by E.Andersson Sundén
Scatter Background T = total spectrum, B = thermal bulk NBI = neutral beam AKN = alpha knock-on Simulation JET; D Neutron emission • Fusion experiments with D and T fuel: • d + d 3He + n (2.45 MeV) • d + t 4He + n (14.0 MeV) • “Impurities” • d + 3He, 4He, 9Be, 12C, ... n + X • Plasma parameters: Pfus, Ti, f(vion),… • Fuel ion velocity populations: • Thermal f(En) Gaussian • RF heating f(En) anisotropic, double humped • Beam heating, alpha heating, … • Spectral components (ITER): • Thermal bulk Sn 1, • Beam heating Sn 0.1, • RF heating Sn 0.01, • a heating Sn 0.001, • Neutron emission variations: • Intensity; 0 - 1020 n/s (ITER) • Temporal (ms), spatial (cm) n rate JET; D Thermal RF RF Simulation ITER; DT Rn [1015 s-1] Frontiers … Rome, 2009 2
Role and situation for diagnostics • Provide information on relevant plasma/fuel ion parameters • Feed-back for active control; ms time frame • Extended n source (100 m3), “continuous” n emission (min) • Collimated LOS, direct + scattered spectral contributions • Reliable, robust techniques • Harsh experimental conditions around the “reactor” • Neutron and gamma background • High-frequency EM interference • High levels of temperature, B-field • Competition over “real estate”; LOS, position, weight, space, … • Challenges for neutron spectroscopy • Results on ms spectroscopy on MHz signal rates (Ccap) • High eOR close to reactor core • Access to weak emission components high S/B ratio > 104 • Peaked, well-known response function (0 – 20 MeV) • Real-time information in ms data acq., processing, transfer Frontiers … Rome, 2009 3
Neutron spectroscopy techniquesMost “standard” n spectr. techniques tested in fusion (JET) NE213, Stilbene, nat. + CVD diamond Reginatto, Zimbal, RSI 79 (2008)- PTB work Krasilnikov, Rev Sci Instr 69 (1997) Lattanzi, Angelone, Pillon , Fus Eng Des (2009) TOFOR - UU Gatu Johnson, NIM A591 (2008) Frontiers … Rome, 2009 4 TANDEM (TPR) - Harwell Hawkes, RSI 70 (1999) 1134 MPRu - UU Andersson Sundén, NIM A610 (2009)
Time-of-flight Optimized for Rate • Optimized for 2.45 MeV n in D plasmas • Continuous source of n: • Double scattering in S1 + S2 • 16m from plasma • 2m concrete floor • Fast plastic scintillators: • 5x S1 disks • 32x S2 “umbrella” • S2 tilt to compensate for Dtlight • e ≈ 1% • Background = randoms • B Rn2 S:B Rn • Limitations: • “Paralysis” at high Rn • Rate in S1 (≈ MHz) • Ccap ≈ 500 kHz (S:B ≈ 1) • Cmax ≈ 44 kHz (Rn = 1.7∙1016 n/s) • Emphasis on rate capability: • Digital free-running time stamping • Separate, non-correlated p.h. spectra En = 2mnR/ttof2 R n” n’ Frontiers … Rome, 2009 5 n flux
TOFOR – count rate capability • Limiting sensitivity: random coincidences • No correlated time – p.h. information • Randoms corrected for on statistical level • Uniform level from ttof < 0 • Digital time stamping electronics (IST, Portugal) • Dead time free: ALL signal events recorded (+ ALL randoms) • Event based correlations: reduce randoms, reduce timing walk S1 S2 Frontiers … Rome, 2009 6
Thin-foil Magnetic Proton Recoil TOFOR • Separation of functions: • n-to-p conversion in thin (mm) foil • Energy (momentum) separation in B-field • Counting in position resolved hodoscope (32 phoswich scint.) • Focal plane detector (FPD) can be shielded to any required level • Detectors need “only” count protons • Flexibility: • Multiple conversion foils – 2.5/14 MeV • Multiple p collimators • Background reduction: • Concrete + lead radiation shield • Phoswich scintillators, tdecay = 2, 180 ns • TR digital boards • Digital pulse shape discrimination • Performance: • Ccap >> MHz (Cmax = 0.61 MHz) • S:B 20000:1 (14-MeV in DT), Frontiers … Rome, 2009 7 5:1 (2.5-MeV in D)
Alpha heating in DT; MPR 1997 Scattered n Bgr/statistics Background 14-MeV p LED pulser MPR results • Observation of weak components • Alpha heating signature – knock-on n • Phoswich DPSD Phoswich DPSD Qshort Qlong • Preliminary phoswich DPSD analysis • Protons from T burn-up n (14-MeV) • Component at 1% of 2.5 MeV emission • LED for PMT gain monitoring system Frontiers … Rome, 2009 8 TR boards: 8 bit, 200 MSPS, 512 MB Baseline restoration, pile-up rejection Standard DPSD: 2D plot of Qlong/Qshort Strong candidate for ITER Min. ionizing e- 2.5-MeV p 14-MeV p 14-MeV n 0.3 mm 2.5 mm Amplitude
The future • Combined pulse-height/time digitizing boards for ToF • Compact spectrometers for neutron camera; NE213, CVDD • Neutron spectroscopy system for ITER: • 2.5-MeV n spectrometer for D operations; ToF • 14-MeV n spectrometer for high power DT; MPR/TPR • Real-time applications • Innovative, new concepts … Conclusions • Harsh experimental conditions; special requirements • Challenges for Fusion neutron spectrometry: • Count rate capability – provide plasma information • Background rejection – study weak emission comp. • Dynamic range/sensitivity – varying plasma cond. Frontiers … Rome, 2009 9