230 likes | 413 Views
Applications for Renewable Energy. Wind-2-H2O. Presentation by: Alison Ernst, Matt Ball, JP Dolphin, Pim Dangkulwanich, Will Liew, Deshira Wallace & Nick Millar. Background Design Criteria Evaluation Materials Budget. Overview. Problem Statement.
E N D
Applications for Renewable Energy Wind-2-H2O Presentation by: Alison Ernst, Matt Ball, JP Dolphin, Pim Dangkulwanich, Will Liew, Deshira Wallace & Nick Millar
Background • Design • Criteria • Evaluation • Materials • Budget Overview
Problem Statement Design system that uses wind energy to power brackish water desalination system without electricity Applicable to: -Developing countries Arid or Semi-Arid regions
Criteria: Wind Turbine • Low Cut-in Speed • Easy to Maintain • Easy to Construct • Reliable • Low Cost • Longevity • Torque Output
The Design: Wind Turbine • Savonius • Vertical Axis Wind Turbine (VAWT) • Drag-type Device
The Design: Wind Turbine S-Roter Double-hook Source: Alexander et al, 1978 Source: Modiet al, 1983
Criteria: Pump • Simple Construction • Ease of Maintenance • Low Cost • Reliability • High Pressure Output
The Design: Pump Objective function (Z2)= 0.9f1+0.7f2+0.7f3+0.4f4+0.4f5+0.4f6+0.4f7+0.2f8 Goal: minimize Z2 External Gear Pump: Z2EG=7.6 Peristaltic Pump: Z2P=8.7 Internal Gear Pump: Z2IG=7.1 Vane Pump: Z2V=8.1 Axial Piston Pump: Z2AP=9 Plunger Pump: Z2PP=6.2
The Design: Pump Plunger Pump Double-action Plunger Pump • Advantages: • Few moving parts • Proven technology
Evaluation: Membrane • Primary desalination technologies: • Electro-dialysis • Mechanical Vapor Compression • Reverse Osmosis
Evaluation: Membrane Pugh Decision Matrix: Membrane Material
The Design Pugh Decision Matrix: Membrane Structure
Design: Membrane • Thin Film Composite Spiral Wound • Commercially available • Ultra-low pressure membranes in development
Considerations: Membrane • Choose membrane from manufacturer • Determine exact operating pressure • Determine flow rates • Decide on number of membranes • Get approximate costs • Aim for ultra-low pressure
Considerations: Membrane • Select pretreatment • Filter out suspended solids • Prevent microbial growth on RO membrane • Activated carbon, sand filters • Refine post-treatment • Chlorine to prevent later microbial growth • Determine dosing • Consider disposal of brine stream
Materials • Bench scale: Wind Turbine • Aluminum Flashing • Plywood • Steel Shaft (~.5” diameter) • 2 sets of bearings (ball) • Aluminum angle • Epoxy • Rivets • Membrane • Low-pressure RO membrane • Pre-treatment Filter • Piping • Pump System • Pre-made plunger system • Gearing system
References Alexander, A. J., & Holownia, B. P. Wind tunnel tests on a savonius roter. Journal of Industrial Aerodynamics, 1978, Retrieved January 24, 2009, from https://wiki.duke.edu/download/attachments/13373206/Loughborough+report.pdf. Ackermann, T., Soder, Lennart (2002). "An overview of wind energy-status 2002." Renewable and Sustainable Energy Reviews 6: 67-128. Elimelech, M., Zhu, X., Childress, A.E., Hong, S. (1997). “Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes.” Journal of Membrane Science, 127, 101-109. Eltawil, M., Zhengming, Zhao, Yuan, Liqiang (2008). Renewable Energy Powered Desalination Systems: Technologies and Economics-State of the Art. Twelfth International Water Technology Conference, Alexandria, Egypt. "Hydrostatic Pumps". Hydraulic Equipment and Tools Marketplace. Hydraulic Equipment Manufacturers. Retrieved 25 Jan 2009, from http://www.hydraulic-equipment-manufacturers.com/hydraulic-articles1.html. “Integrated Wind Energy/Desalination System” (2006). GE Global Research. NREL SR-500-39485. Johnson, G. L. (2001). Wind Energy Systems. Manhattan, KS, Prentice-Hall. 2. Krivchenko, G. (1994). Hydraulic Machines: Turbine and Pumps. 2nd ed. Boca Raton, FL: CRC Press. Leighton, C. W. H., Martin, D.D., Lindemann, W.C. (1983). “Inability of Microorganisms To Degrade Cellulose Acetate Reverse-Osmosis Membranes”. Applied and Environmental Microbiology, 45, 418-427. Liu, C.C.K., et al. “Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control.” Elsevier. Desalination 150 (2002) 277-287.
References Lonsdale, H. K., Merten, U., Riley, R.L. (1965). Transport Properties of Cellulose Acetate Osmosis Membranes. Journal of Applied Polymer Science, 9, 1341-1362. Loopwing Co. (2008). "Loopwing Characteristics." Retrieved January 22, 2009, from http://www.loopwing.co.jp/en/entop.html. Lopez-Ramirez, J. A., Coella Ovieda, M.D., Quiroga Alonso, J.M. (2006). Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination, 191, 137-147. Modi, V. J., Roth, N. J., & Fernando, M.S. Optimum configuration studies and prototype design of a wind-energy-operated irrigation system. Journal of Wind Engineering and Industrial Aerodynamics, 16, Retrieved January 24, 2009 “Reverse Osmosis Water Treatment” (2001). Water Systems. Retrieved January 19, 2009, from http://www.aquatechnology.net/reverse_osmosis.html Singh, R. (2005). “Introduction to Membrane Technology”. Hybrid Membrane Systems for Water Purification. Colorado Springs, CO, Elsevier. Thompson, M., Miranda, M. (2000). “Theory, testing and modelling of a Clark pump.” CREST, Loughborough University of Technology, UK. Wagner, J. (2001). Membrane Filtration Handbook: Practical Tips and Hints (2nd ed.). Minnesota: Osmonics, Inc.