1 / 29

Multiplicity analysis and dN/d h reconstruction with the silicon pixel detector

Terzo Convegno Nazionale sulla Fisica di ALICE Frascati (Italy) – November 12-14, 2007. Multiplicity analysis and dN/d h reconstruction with the silicon pixel detector. Maria Nicassio (Univ. and INFN Bari) in collaboration with D. Elia, B. Ghidini (Univ. and INFN Bari)

wei
Download Presentation

Multiplicity analysis and dN/d h reconstruction with the silicon pixel detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Terzo Convegno Nazionale sulla Fisica di ALICE Frascati (Italy) – November 12-14, 2007 Multiplicity analysis and dN/dh reconstruction with the silicon pixel detector Maria Nicassio (Univ. and INFN Bari) in collaboration with D. Elia, B. Ghidini (Univ. and INFN Bari) T. Virgili (Univ. Salerno)

  2. Contents • Introduction: • physics motivation • tracklet reconstruction algorithm • Status of the analysis: • study of the corrections: • geometrical acceptance • detector efficiency • background from secondaries • vertex reconstruction efficiency • minimum bias trigger acceptance • Summary and outlook Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  3. Introduction • Why multiplicity: • first measurement in p-p collisions for ALICE • global observable characterizing the event • comparison with results obtained at lower energies • Why multiplicity with pixels: • available in a short time • advantages over reconstructed tracks (ITS+TPC) • larger acceptance coverage • only alignment of the two pixel layers required Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  4. Introduction • Acceptance coverage: SPD layers: -2.0 < < 2.0 (inner) -1.5 < < 1.5 (outer) Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  5. q Fiducial window Df Introduction • Multiplicity reconstruction: • (a) counting clusters on the inner layer (|| < 2.0) • no detector alignment required • reliable at high multiplicity • (b) counting tracklets (|| < 1.5) • alignment, vertex needed • more reliable (e.g. good noise rejection) • Pseudorapidity reconstruction: • vertex needed for both methods • the angle q of the cluster on the inner layer is used Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  6. dN/dh distributions (uncorrected) Tracklets Inner layer clusters asymmetry due to the detector efficiency losses in PDC06 Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  7. Corrections: SPD acceptance (I) • MC data samples: • Pb-Pb (HijingParam) collisions @ 5.5 TeV: • 20,000 tracks/evt, h within [-4,4] • event vertex-Z within [-20,20] cm • fully efficient SPD  2,500 evts pure geom acceptance • standard PDC06 SPD dead chip map  2,500 evts convoluted acc+eff • Correction matrix: • binning and range: • h within [-3,3] nEtabins = 120  dh = 0.05 • vtx-Z within [-20,20] cm nVtxzbinx = 40  dVtx-Z = 1 cm Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  8. Corrections: SPD acceptance (II) • Calculation method: • detectable_tracks (fDenAcc): • primary charged • no decay, no secondary interactions up to the sensitive layer • detected_tracks (fNumAcc): • detectable tracks with associated (label) cluster on the sensitive layer • if there are 2 clusters on adjacent modules: track is counted twice  this takes into account the overlapping regions ( 2%) • compute acceptance and error in each bin (fAcc,fErrAcc) • statistics in each bin: • detectable tracks:  104 • resulting error on the acceptance:  10-3 Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  9. Inner layer Outer layer Tracklets Corrections: SPD acceptance (III) • Results: • convoluted acceptance & efficiency: Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  10. Corrections: acceptance & efficiency (I) • Correction applied: Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  11. Corrections: acceptance & efficiency (II) • Correction applied: Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  12. Corrections: background from secondaries (I) • Studied using the SPD cluster labels • Definition of background: • for clusters on the inner layer: • clusters having secondary track labels only • for tracklets: • at least one of the two clusters in the tracklet having secondary track labels only Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  13. Corrections: background from secondaries (II) • Clusters (inner layer): Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  14. Corrections: background from secondaries (III) • Clusters (inner layer): correction (to be multiplied by) Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  15. Tr(S+S) + Tr(P+S) Tr(P+P)+Tr(P+P’) Tr(P+P) Tr(S+S) Tr(P+P’) Tr(P+S) Corrections: background from secondaries (IV) • Tracklets: to be subtracted (total bkg fraction: 7.5%) Tracklets from primaries Tracklets from secondaries P, P’ = cluster with a label of a primary track S = cluster with all labels of secondary tracks Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  16. Corrections: background from secondaries (V) • Tracklets: correction (to be multiplied by) Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  17. Corrections: vertex reconstruction (I) • Generated dNch/dh N.B. The correction is integrated, but it should be a function of multiplicity and vertex position Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  18. Corrections: vertex reconstruction (III) • Correction (to be multiplied by) The correction depends both on h and on multiplicity at low multiplicity To be checked as a function of Z-vtx Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  19. Final dN/dh distributions • All corrections applied: inner layer clusters Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  20. Final dN/dh distributions • All corrections applied: tracklets Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  21. Multiplicity distributions (uncorrected) Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  22. Multiplicity distributions • Background correction: 7% 16% Background fractions for each event Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  23. Multiplicity distributions • All corrections applied: Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  24. Effect of trigger selection: first look (I) • Trigger correction: MB2 =(GFO.and.V0OR).and.notBG Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  25. All events No trigger No vertex Effect of trigger selection: first look (II) • Generated dN/dh: MB2 =(GFO.and.V0OR).and.notBG Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  26. Summary and outlook • Multiplicity and pseudorapidity density in p-p: • first measurement in ALICE • reconstruction with the Silicon Pixel Detector only • Status of the analysis: • raw reconstructed distributions with PDC06 data • study of the main corrections: • acceptance, efficiency, background from secondaries, vertex, trigger • What next: • check correction dependence on multiplicity, Z-vtx • estimate of the systematics • tests with PDC07 data Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  27. Backup slides Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  28. Tracklet algorithm efficiency in p-p • Couples of clusters associated with the same track Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

  29. Tracklet algorithm efficiency in p-p • Couples of clusters associated with the same track Using the default cuts the algorithm efficiency is 99% Convegno Nazionale sulla Fisica di ALICE Frascati - November 12, 2007

More Related