1 / 108

Ch 2: probability sampling, SRS

Ch 2: probability sampling, SRS. Overview of probability sampling Establish basic notation and concepts Population distribution of Y : object of inference Sampling distribution of an estimator under a design: assessing the quality of the estimate used to make inference

wendi
Download Presentation

Ch 2: probability sampling, SRS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch 2: probability sampling, SRS • Overview of probability sampling • Establish basic notation and concepts • Population distribution of Y : object of inference • Sampling distribution of an estimator under a design: assessing the quality of the estimate used to make inference • Apply these to SRS • Selecting a SRS sample • Estimating population parameters (means, totals, proportions) • Estimating standard errors and confidence intervals • Determining the sample size

  2. Assume ideal setting • Sampled population = target population • Sampling frame is complete and does not contain any OUs beyond the target pop • No unit nonresponse • Measurement process is perfect • All measurements are accurate • No missing data (no item nonresponse) • That is, nonsampling error is absent

  3. Survey error model Total Survey Error Sampling Error Nonsampling Error = + Due to the sampling process (i.e., we observe only part of population) Measurement errorNonresponse errorFrame error Assessed via bias and variance

  4. Probability sample • DEFN: A sample in which each unit in the population has a known, nonzero probability of being included in the sample • Known probability  we can quantify the probability of a SU of being included in the sample • Assign during design, use in estimation • Nonzero probability  every SU has a positive chance of being included in the sample • Proper survey estimates represent entire target population (under our ideal setting)

  5. Probability sampling relies on random selection methods • Random sampling is NOT a haphazard method of selection • Involves very specific rules that include an element of chance as to which unit is selected • Only the outcome of the probability sampling process (i.e., the resulting sample) is random • More complicated than non-random samples, but provides important advantages • Avoid bias that can be induced by selector • Required to calculate valid statistical estimates (e.g., mean) and measures of the quality of the estimates (e.g., standard error of mean)

  6. Representative sample • Goal is to have a “representative sample” • Probability sampling is used to achieve this by giving each OU in target population an explicit chance to be included in the sample • Sample reflects variability in the population • Applies to the sample, but does not apply to the OU/SU (don’t expect each observation to be a “typical” pop unit • Can create legitimate sample designs that deliberately skew the sample to include adequate numbers of important parts of the variation • Common example: oversampling minorities, women • MUST use estimation procedures that take into account the sample design to make inferences about the target population (e.g., sample weights)

  7. Basic sampling designs • Simple selection methods • Simple random sampling (Ch 2 & 3) • Select the sample using, e.g., a random number table • Systematic sampling (2.6, 5.6) • Random start, take every k-th SU • Probability proportional to size (6.2.3) • “Larger” SU’s have a higher chance of being included in sample • Selection methods with explicit structure • Stratified sampling (Ch 4) • Divide population into groups (strata) • Take sample in every stratum • Cluster sampling (Ch 5 & 6) • OUs aggregated into larger units called clusters • SU is a cluster

  8. Examples • Select a sample of n faculty from the 1500 UNL faculty on campus • Goal: estimate total (or average) number of hours faculty spend per week teaching courses • Simple random sampling (SRS) • Number faculty from 1 to 1500 • Select a set of n random numbers (integers) between 1 and 1500 • Faculty with ids that match the random numbers are included in the sample

  9. Examples - 2 • Systematic sampling (SYS) • Choose a random number between 1 and 1500/n • Select faculty member with that id, and then take every k-th faculty member in the list, with sampling interval k is 1500/n • SRS / SYS • Each faculty member has an equal chance of being included in sample • Each sample of n faculty is equally likely

  10. Examples - 3 • Probability proportional to size (PPS) • With pps design, we assign a selection probability to each faculty member that is proportional to the number of courses taught by a faculty member that semester • “Size” measure = # of courses taught by faculty member • Faculty who teach more courses are more likely to be included in the sample, but those that teach less still have a positive chance of being included • Motivation: faculty that spend more hours on courses are more critical to getting good estimate of total hours spent • Data from faculty with higher inclusion probabilities will be “down weighted” relative to those with lower probabilities during the estimation process • Typically accomplished using weights for each observation in the dataset

  11. Examples - 4 • Stratified random sampling (STS) • Organize list of faculty by college • Stratum = college • Allocate n (divide sample size) among colleges so that we select nh faculty in the h-th college • Sum of nhover strata equals n • Use SRS, e.g., to select sample in each of the college strata • Could use SYS or PPS rather than SRS • Could have different selection methods in each stratum

  12. Examples - 5 • Cluster sampling (CS) • Aggregate faculty into departments • OU = faculty member, SU = dept • Select a sample of departments, e.g., using SRS • Very common to use PPS for selecting clusters • “Size” measure = number of OUs in the the cluster SU • Many variants for cluster sampling • After selecting clusters, may want to select a sample of OUs in the cluster rather than taking data on every OU • E.g., select 15 depts in the first stage of sampling, then select 10 faculty in each dept in a second stage of sampling • This is called 2-stage sampling

  13. Examples - 6 • Complex sample designs (Ch 7) • Combine basic selection methods (SRS, SYS, PPS) with different methods of organizing the population for sampling (strata, clusters) • Typically have more than one stage of sampling (multi-stage design) • Often can not create a frame of all OUs in the population • Need to select larger units first and then construct a frame • Stratification and systematic sampling are often used to encourage spread across the population • This improves chances of obtaining a representative sample • Costs are often reduced by selecting clusters of OUs, although cluster sampling may lead to less precision in estimates

  14. Notation for target population • The total number of OUs in the population (also called the universe) is denoted by N • Note UPPER CASE • Ideally for SRS, sampling frame is list of N OUs in the pop • EX: there are N = 4 households in our class • Index set (labels) for all OUs in the population (or universe) is called U • U = {1, 2, …, N} • A different index set could be our names, or our SSNs • Each person has a value for the characteristic of interest or random variable Y , the number of people in the household • The value of Y for household i is denoted by yi • Values in the population are y1, y2, …, yN

  15. Notation for sample • Sample size is denoted by n • Note lower case • n is always less than or equal to N (n = N is a census) • Index set (labels) for OUs in the sample is denoted by S • To select a sample, we are selecting n indices (labels) from the universe U , consisting of N indices for the population • U is our sampling frame in this simple setting • Labels in S may not be sequential because we are selecting a subset of U

  16. Class example • Suppose n = 2 households are selected from a population of N = 4 households in the class • U = {1, 2, 3, 4} • Randomly select sample using SRS and get 2 and 3 • S = • The data collected on OUs in the sample are values for Y = number of people in the household • Data:

  17. Summary of probability sampling framework • Assumptions (for now) • Observation unit = sampling unit • Target population = sampling universe = sampling frame • N = finite number of OUs in the population • U = {1, 2, …, N} is the index set for the OUs in the population • Sample • n = sample size (n is less than or equal to N ) • S = index set for n elements selected from population of N units (S is a subset of U)

  18. Conceptual basis for probability sampling • Conceptual framework for selecting samples • Enumerate all possible samples of size n from the population of size N • Each sample has a known probability of being selected • P(S) = probability of selecting sampleS • Use this probability scheme to randomly choose the sample • Using the probability scheme for the samples, can determine the inclusion probability for each SU • i = probability that a sample is selected that includes uniti

  19. Simple example • Population of 4 students in study group, take a random sample of 2 students • Setting • U = {1, 2, 3, 4} • N = 4 • n = 2 • All possible samples of size n = 2 from N = 4 elements • Note: n < N and S U

  20. Simple example - 2 • All possible samples S1 = {1, 2} S3 = {1, 4} S5 = {2, 4} S2 = {1, 3} S4 = {2, 3} S6 = {3, 4} • Design is determined by assigning a selection probability to each possible sample P(S1) = 1/3 P(S3) = 1/2 P(S5) = 0 P(S2) = 1/6 P(S4) = 0 P(S6) = 0

  21. Simple example - 3 • Inclusion probability definition? • What is the probability that student 1 is included in the sample? • 1 = • Inclusion probability for student 2, 3, 4? • 2 = • 3 = • 4 = • Is this a probability sample?

  22. Population distribution • Response variables represent values associated with a characteristic of interest for i-th OU • Y is the random variable for the characteristic of interest (CAP Y) • yi = value of characteristic for OU i(small y) • The population distribution is the distribution of Y for the target population • Y is a discrete random variable with a finite number of possible values (<= N values) • Use discrete probability distribution to represent the distribution of Y

  23. Population distribution - 2 • A discrete probability distribution is denoted by a series of pairs corresponding to • Value of the random variable Y, denoted by y • Relative frequency of the value y for the random variable Y in the population, denoted by P(Y = y) • Pair is { y , P(Y = y) } • Constructing a probability distribution • List all unique values y of random variable Y • Record the relative frequency of y in the population, P(Y = y)

  24. Class example - 2 • Back to # of people in household for each class member • What are the unique values in the pop? • What is the frequency of each value? • What is the relative frequency of each value? • Construct a histogram depicting the variation in values

  25. Summarizing the population distribution • Use population parameters to summarize population distribution • Mean or expected value of y (parameter: ) • Proportion of population having a particular characteristic = mean of a binary (0, 1) variable (parameter: p) • For finite populations, population total of y is often of interest (parameter: t) • Variance of y (parameter: S 2)

  26. Mean of Y for population • Expected value, or population mean, of Y • Mean is in y-units per OU-unit • Measure of central tendency (middle of distn) • Related to population total (t) and proportion (p) • Examples • Average number of miles driven per week adults in US • Average number of phone lines per household

  27. Class example - 3 • What is the mean household size for people in this classroom?

  28. Total of Y in population • Population total of Y • Total number of y-units in the population • Examples • Number of households in market area with DSL • yi =1 if household i has DSL, yi = 0 if not • N = number of households in market area • Number of deer in Iowa • yi =number of deer observed in area i • N = number of observation areas in Iowa

  29. Class example - 4 • What is the total number of people living in households of people in the classroom?

  30. Proportion • Proportion (p) of population having a particular characteristic • Mean of binary variable

  31. Class example - 5 • What proportion of people in the classroom have a cell phone?

  32. Population variance of Y • Population variance of Y • Measure of spread or variability in population’s response values • Analogous to 2in other stat classes • Not the standard error of an estimate • Note this is CAP S 2

  33. Coefficient of variance for Y • Variation relative to mean (unitless)

  34. Class example - 6 • What is the population variance for number of people in households of people in the classroom? • What is the CV?

  35. Summary of population distribution of Y • Basic pop unit: OU (i) • Number of units or size of pop: N • Random variable: Y • Parameters: characterize the target population • Mean • Total t • Proportion (mean) p • Variance S2 • Coefficient of variation CV = S / • STATIC: it is the object of inference and never changes with design or estimator

  36. What’s next • Population distribution of Y is object of inference • Use SRS to select a sample and estimate the parameters of the population distribution • How to select a sample • Estimators for population parameters of Y under SRS • Sample mean estimates population mean • N x sample mean estimates population total • Sample variance estimates population variance • Assessing the quality of an estimator of a population parameter under SRS • Sampling distribution • Bias, standard error, confidence intervals for the estimator

  37. Simple random sample (SRS) • DEFN: A SRS is a sample in which every possible subset of n SUs has an equal chance of being selected as the sample •  every sampling unit has equal chance of being included in the sample • Example of an “equal probability” sample • Does not imply that a sample in which each SU has the same inclusion probability is a SRS • Other non-SRS designs can generate equal probability samples

  38. Simple random sampling (SRS) • Two types • SRSWR (SRS with replacement) • Return SU after each step in the selection process • SRSWOR (SRS without replacement) • Do not return SU after it has been selected • Selection probability • Probability that a unit is selected in a single draw • Constant throughout SRSWR process • Changes with each draw in the SRSWOR process • NOT an inclusion probability, which considers the probability of drawing a sample that includes unit i

  39. SRSWR (SRS with replacement) • Selection procedure • Select one OU with probability 1/N from N OUs • This is the selection probability for each draw • Returning selected OU to universe • Repeat n times • Procedure is like drawing n independent samples of size 1 • Can draw a sampling unit twice – duplicate units • Unappealing for finite populations – no additional info in having a duplicate unit • Useful in theoretical development for large populations

  40. Focus: SRSWOR (SRS without replacement) • Selection procedure • Select one OU from universe of size N with probability 1/N • DON’T return selected unit to universe • Select 2nd OU from remaining units in universe with probability 1/(N - 1) • DON’T return selected unit to universe • Repeat until n sampling units have been selected • Selection probabilities change with each draw • 1/N, then 1/(N -1), then 1/(N -2), …, 1/(N – n +1)

  41. SRSWOR (SRS without replacement) • Probability of selecting a sampling unit in a single draw depends on number of SUs already selected (conditional probability) • On the c-th step of the process, c-1 s.u.s have already been selected for a sample of size n • Probability of selecting any of the remaining N – c + 1 s.u.s in the next draw is • Inclusion probability for SU i (unconditional probability) • (see p. 44 in text)

  42. SRSWOR (SRS without replacement) • Number of possible SRSWOR samples of size n from universe of size N • Probability of selecting a sample S (Probability is the same for all samples)

  43. Selecting a SRS using SRSWOR • Create a sampling frame • List of sampling units in the universe or population • Assigns an index to each sampling unit • Determine a selection procedure that performs SRSWOR • Procedure must generate to n unique sampling units such that each SU has an equal chance of being included in the sample • Random number generator or table is common basis • Need rules to identify when the selected unit is included in the sample or tossed • Select random numbers and determine sampled units

  44. Using random numbers to select a SRSWOR sample • Determine a rule to assign random numbers to the sampling universe index set U • Rule must give each unit an equal chance of being included in the sample • Select the set of random numbers, e.g., using computer or printed random number table • Apply the rule to each random number to determine the sampled OU • Check to see if this OU has already been selected • If already selected, ignore it • Keep going until you have n SUs in the sample

  45. Census of Agriculture example Select 300 counties from 3078 counties in the US • N = • n = • Sampling frame = ? • Generate random numbers between 0 and 1 on the computer • Need n or more random numbers depending on rule • Multiply each random number by N = 3078and round up to the nearest integer • Random number = .61663 • Multiply random # by N = 3078 x .61663 = 1897.98714 • Round up to 1898 • Take 1898th county in the frame

  46. Estimating population mean under SRS • Target population mean • Estimator of for SRS sample of size n is the sample mean • Note • “Estimator” refers to the formula • “Estimate” refers to the value obtained from using the formula with data

  47. Class example - 7 • Estimate the average household size for our classroom

  48. Estimating population total • Target population total • Estimator of t for SRS sample of size n

  49. Class example - 8 • Estimate the total number of people living in the households of people in this classroom

  50. Estimating population proportion • Target population proportion • Y takes on values 0 or 1, where 1 means the unit has the characteristic of interest • Estimator of p for SRS sample of size n

More Related