1 / 37

TTh  11:00-12:15 in Clark S361 Profs: Serafim Batzoglou, Gill Bejerano

TTh  11:00-12:15 in Clark S361 Profs: Serafim Batzoglou, Gill Bejerano TAs: George Asimenos, Cory McLean. Lecture 10. Transcription Regulation in Vertebrates contd. Unicellular vs. Multicellular. unicellular. multicellular. Pol II Transcription. Key components: Proteins DNA sequence

Download Presentation

TTh  11:00-12:15 in Clark S361 Profs: Serafim Batzoglou, Gill Bejerano

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TTh  11:00-12:15 in Clark S361 Profs: Serafim Batzoglou, Gill Bejerano TAs: George Asimenos, Cory McLean http://cs273a.stanford.edu [Bejerano Spr06/07]

  2. Lecture 10 • Transcription Regulation in Vertebrates contd. http://cs273a.stanford.edu [Bejerano Spr06/07]

  3. Unicellular vs. Multicellular unicellular multicellular http://cs273a.stanford.edu [Bejerano Spr06/07]

  4. Pol II Transcription • Key components: • Proteins • DNA sequence • DNA epigenetics • Protein components: • General Transcription factors • Activators • Co-activators http://cs273a.stanford.edu [Bejerano Spr06/07]

  5. Activators & Co-Activators Protein - Protein Protein - DNA http://cs273a.stanford.edu [Bejerano Spr06/07]

  6. Cis-Regulatory Components • Low level (“atoms”): • Promoter motifs (TATA box, etc) • Transcription factor binding sites (TFBS) • Mid Level: • Promoter • Enhancers • Repressors/Silencers • Insulators/boundary elements • Cis-Regulatory Modules (CRM) • Locus Control Regions (LCR) • High Level: • Gene Expression Domains • Gene Regulatory Networks (GRN) http://cs273a.stanford.edu [Bejerano Spr06/07]

  7. Chromatin Remodeling “off” “on” http://cs273a.stanford.edu [Bejerano Spr06/07]

  8. Tx Factors Binding Sites http://cs273a.stanford.edu [Bejerano Spr06/07]

  9. Distal Transcription Regulatory Elements http://cs273a.stanford.edu [Bejerano Spr06/07]

  10. Enhancers http://cs273a.stanford.edu [Bejerano Spr06/07]

  11. Enhancers: action over very large distances RNAP II Basal factors promoter Enhancer with bound protein http://cs273a.stanford.edu [Bejerano Spr06/07]

  12. Transient Transgenic Enhancer Assay in situ Conserved Element Minimal Promoter Reporter Gene Construct is injected into 1 cell embryos Taken out at embryonic day 10.5-14.5 Assayed for reporter gene activity transgenic http://cs273a.stanford.edu [Bejerano Spr06/07]

  13. Enhancer verification Matched staining in dorsal apical ectodermal ridge (part of limb bud) Matched staining in genital eminence http://cs273a.stanford.edu [Bejerano Spr06/07]

  14. Fly Enhancer Combinatorics http://cs273a.stanford.edu [Bejerano Spr06/07]

  15. Vertebrate Enhancer Combinatorics http://cs273a.stanford.edu [Bejerano Spr06/07]

  16. What are Enhancers? • What do enhancers encode? • Surely a cluster of TF binding sites. • [but TFBS prediction is hard, fraught with false positives] • What else? DNA Structure related properties? • So how do we recognize enhancers? • Sequence conservation across multiple species • [weak but generic] http://cs273a.stanford.edu [Bejerano Spr06/07]

  17. Repressors / Silencers http://cs273a.stanford.edu [Bejerano Spr06/07]

  18. What are Enhancers? Repressors • What do enhancers encode? • Surely a cluster of TF binding sites. • [but TFBS prediction is hard, fraught with false positives] • What else? DNA Structure related properties? • So how do we recognize enhancers? • Sequence conservation across multiple species • [weak but generic] • Verifying repressors is trickier [loss vs. gain of function]. • How do you predict an enhancer from a repressor? Duh... repressors repressors http://cs273a.stanford.edu [Bejerano Spr06/07]

  19. Insulators http://cs273a.stanford.edu [Bejerano Spr06/07]

  20. Gene Expression Domains: Independent http://cs273a.stanford.edu [Bejerano Spr06/07]

  21. Gene Expression Domains: Dependent http://cs273a.stanford.edu [Bejerano Spr06/07]

  22. Correlation with Human Disease [Wang et al, 2000] http://cs273a.stanford.edu [Bejerano Spr06/07]

  23. Other Positional Effects [de Kok et al, 1996] http://cs273a.stanford.edu [Bejerano Spr06/07]

  24. Chromatin Structure http://cs273a.stanford.edu [Bejerano Spr06/07]

  25. Histone Code http://cs273a.stanford.edu [Bejerano Spr06/07]

  26. Epigenetics [Goldberg et al, 2007] http://cs273a.stanford.edu [Bejerano Spr06/07]

  27. More Functional Assays In vitro / in vivo Fragment / BAC Gain / Loss BAC cut and paste http://cs273a.stanford.edu [Bejerano Spr06/07]

  28. Protein & Chromatin Assays • Protein binding assays: • Electrophoretic mobility shift assays (EMSA) / Gel Shift • DNAseI protection • SELEX & CASTing • Chromatin immuno-precipitation (ChIP), ChIP-chip • and various chromatin assays. http://cs273a.stanford.edu [Bejerano Spr06/07]

  29. Gene Regulatory Networks [Davidson & Erwin, 2006] http://cs273a.stanford.edu [Bejerano Spr06/07]

  30. The Hox Paradox [Wray, 2003] http://cs273a.stanford.edu [Bejerano Spr06/07]

  31. The Great Vertebrate-Invertebrate Divide http://cs273a.stanford.edu [Bejerano Spr06/07]

  32. Gene Regulatory Network (GRN) Components • Davidson & Erwin (2006): 4 classes of GRN components: • ‘‘kernels’’ evolutionarily inflexible subcircuits that perform essential upstream functions in building given body parts. • ‘‘plug-ins’’ certain small subcircuits that have been repeatedly co-opted to diverse developmental purposes(regulatory, inc. signal transduction systems) • “I/O switches” that allow or disallow developmental subcircuits to function in a given context (e.g., control of size of homologous body parts, many hox genes) • differentiation gene batteries (execute cell-type specific function, end-players) http://cs273a.stanford.edu [Bejerano Spr06/07]

  33. GRN Kernel properties • Network subcircuits that consist of regulatory genes (i.e., TFs). • They execute the developmental patterning functions required to specify the embryo spatial domain/s in which body part/s will form. • Kernels are dedicated to given developmental functions and are not used elsewhere in development of the organism (though individual genes of the kernel are likely used in many different contexts). • They have a particular form of structure in that the products of multiple regulatory genes of the kernel are required for function of each of the participating cis-regulatory modules of the kernel. • Interference with expression of any one kernel gene will destroy kernel function altogether and is likely to produce the catastrophic phenotype of lack of the body part. • The result is extraordinary conservation of kernel architecture. http://cs273a.stanford.edu [Bejerano Spr06/07]

  34. Kernel example [Davidson & Erwin, 2006] http://cs273a.stanford.edu [Bejerano Spr06/07]

  35. Kernels and Phyla t now http://cs273a.stanford.edu [Bejerano Spr06/07]

  36. Deciphering the cis-regulatory code http://cs273a.stanford.edu [Bejerano Spr06/07]

  37. CRM prediction algorithm (Overview) [Blanchette et al., 2006] http://cs273a.stanford.edu [Bejerano Spr06/07]

More Related